
Etude des rythmes de migration au niveau des stations de contrôle de Golfech, du Bazacle et de Carbonne et de la reproduction de la grande alose sur la Garonne en aval de Golfech

Année 2020

L Carry, W Bouyssonnie, S Gracia, O Menchi





# ETUDE DES RYTHMES DE MIGRATION AU NIVEAU DES STATIONS DE CONTROLE DE GOLFECH, DU BAZACLE ET CARBONNE ET DE LA REPRODUCTION DE LA GRANDE ALOSE SUR LA GARONNE EN AVAL DE GOLFECH

## MPGOL20 - MPBAZ20 - MPCARB20 - MPALAG20

## Etude financée par :

L'Union Européenne L'Agence de l'Eau Adour-Garonne Electricité de France L'ENSAT

> William BOUYSSONNIE Laurent CARRY Sébastien GRACIA Olivier MENCHI

## RESUME

Etude des rythmes de migration au niveau des stations de contrôle de la Garonne (Golfech, Bazacle, Carbonne) et de la reproduction de la grande alose sur la Garonne

#### Objectifs de l'action

- Connaissance des populations de la Garonne (migrateurs et holobiotiques)
- Etudier les rythmes de migrations des différentes espèces sur la Garonne
- Participer à l'amélioration des dispositifs de franchissement
- Evaluer les opérations de restauration liées notamment au saumon atlantique



2020 : 168 saumons contrôlés dont 80% entre les mois de mars et avril.

60 individus contrôlés au Bazacle et seulement 16 transportés sur les zones de reproduction de l'Ariège en raison des mesures de confinement liées à la crise sanitaire



Bonne disponibilité des dispositifs de franchissement mais fonctionnement dégradé de la passe à anguilles de Golfech en période de très faible débit.



364 Aloses, 4 lamproies

La situation de ces deux espèces est très alarmante sur le bassin

#### Contexte de l'année

L'année 2020 s'inscrit dans une année particulièrement contrastée au niveau de l'hydrologie de la Garonne avec des débits faibles en janvier février et avril et des débits soutenus lors des mois de mars et mai. Cependant, ces observations mensuelles lissent les épisodes de crues de courtes durées mais qui peuvent influencer la migration des poissons et/ou le fonctionnement des dispositifs de franchissement. Par ailleurs, ces très faibles débits de la Garonne entre les différentes crues, couplés à de fortes périodes d'ensoleillement ont favorisé l'augmentation rapide de la température de l'eau à partir du début du mois de juin.

## Le bilan piscicole

Migrateurs II est passé 364 aloses, à l'ascenseur à poissons de Golfech, un des plus faible effectif observé au niveau de Golfech. Le stock reproducteur sur l'ensemble du bassin Garonne Dordogne est estimé à 16500 géniteurs dont 2500 sur le bassin de la Garonne. Un individu a été contrôlé au Bazacle et aucun à Carbonne.

Les effectifs de saumons contrôlés à Golfech sont supérieurs à la moyenne de ces 15 dernières années (122 individus) avec 168 individus observés. Plus de 75 % des individus ont été contrôlés avant le mois de mai, et la population est globalement constituée à 88 % d'individus de plusieurs hivers de mer. Du fait de la crise sanitaire et du confinement associé à cette crise, seulement 16 individus ont été transportés sur l'Ariège pour permettre de favoriser la reproduction naturelle sur ce bassin. Cependant, 60 saumons ont franchi le barrage du Bazacle à Toulouse, soit 40% des effectifs contrôlés à Golfech et ayant la possibilité de progresser vers l'amont. Ainsi en 2020, ce sont 76 saumons sur les 168 qui ont la possibilité de se reproduire, soit 47% des effectifs. A Carbonne 12 individus ont été capturés issus des individus contrôlés au Bazacle, et transportés sur l'Ariège tel que préconisé par le Groupe Migrateur Garonne du COGEPOMI.

Cette année, il a été estimé à 53257 le nombre d'anguilles ayant franchi l'ouvrage de Golfech en 2020 soit bien inférieur à la moyenne des années précédentes. La migration a été perturbé par la gestion des débits dans les dispositifs de franchissement en période d'étiage. Les 4 lamproies contrôlées à Golfech en 2020 sont anecdotiques et l'absence de lamproies depuis maintenant 6 ans est très alarmante d'autant plus que cette espèce est quasiment le seul grand migrateur exploité par la pêche aux engins sur la partie aval des axes. L'espèce a été déclassée en espèce en danger par l'UICN au niveau national.

### Bilan axes de travail / perspectives

Migrateurs: Le système de comptage des anguilles Hizkia sera testée une dernière année sur le site pour valider son efficacité lors des très gros pics de migration. Une vigilance sera apportée au fonctionnement de la passe spécifique lors des périodes d'étiage, avec la mise en place d'un protocole validé par MIGADO et le personnel du GU de Golfech.

Anti retour entrée 1 : L'efficacité de l'anti retour mis en place en 2020 au niveau de l'entrée 1 n'a pu être testé en 2020. L'étude de radiopistage des saumons sur la Garonne devrait apporter des éléments de réponse dès 2021.

## **SOMMAIRE**

| SOMMAIRE                                                                                       |    |
|------------------------------------------------------------------------------------------------|----|
| TABLE DES ILLUSTRATIONS                                                                        | !! |
| INTRODUCTION                                                                                   | 1  |
|                                                                                                |    |
| 1 PRESENTATION GENERALE                                                                        | 3  |
| 1.1 SITE DE GOLFECH                                                                            | 4  |
| 1.2 SITE DU BAZACLE                                                                            | 7  |
| 1.3 SITE DE CARBONNE                                                                           | 9  |
| 1.4 DEROULEMENT DE L'ETUDE                                                                     | 10 |
| 1.4.1 Recueil de paramètres                                                                    |    |
| 1.4.2 Moyen de contrôle                                                                        |    |
| 1.4.3 Conditions de contrôle                                                                   | 11 |
| 2 BILAN DE FONCTIONNEMENT                                                                      | 12 |
| 2.1 LE FONCTIONNEMENT DU DISPOSITIF DE FRANCHISSEMENT DE GOLFECH                               | 12 |
| 2.2 LE FONCTIONNEMENT DES DISPOSITIFS DE FRANCHISSEMENT DU BAZACLE                             |    |
| 2.3 LE FONCTIONNEMENT DU DISPOSITIF DE FRANCHISSEMENT DE CARBONNE                              |    |
| 3 CONDITIONS DE L'ENVIRONNEMENT                                                                | 19 |
|                                                                                                |    |
| 3.1 LE DEBIT DE LA GARONNE AU NIVEAU DES STATIONS DE CONTROLE.                                 | 19 |
| 3.1.1 Le débit à Golfech                                                                       |    |
| 3.1.2 Le débit à Toulouse (Bazacle)                                                            |    |
| 3.1.3 Le débit à Carbonne                                                                      |    |
| 3.2 LA TEMPERATURE DE L'EAU DE LA GARONNE AU NIVEAU DES STATIONS DE CONTROLE                   |    |
| 3.2.1 La température de l'eau à Golfech                                                        |    |
| 3.2.2 La température de l'eau au Bazacle                                                       |    |
| 3.2.3 La température de l'eau à Carbonne                                                       | 20 |
| 4 BILAN DES PASSAGES DE POISSONS                                                               | 29 |
| 4.1 BILAN GENERAL                                                                              | 29 |
| 4.2 ACTIVITE MIGRATRICE DES ESPECES AMPHIBIOTIQUES AU NIVEAU DE GOLFECH, DU BAZACLE ET DE CARB |    |
| 4.2.1 Migration de l'alose                                                                     | 33 |
| 4.2.2 Migration de l'anguille                                                                  |    |
| 4.2.3 Migration de la lamproie                                                                 |    |
| 4.2.4 Migration des grands salmonidés                                                          |    |
| 4.3 CALENDRIER DES MIGRATIONS A GOLFECH, AU BAZACLE ET A CARBONNE                              |    |
| 4.4 LES ESPECES HOLOBIOTIQUES AU NIVEAU DE GOLFECH, DU BAZACLE ET DE CARBONNE                  |    |
| 4.4.1 Le bilan des passages                                                                    | 81 |
| CONCLUSION                                                                                     | 91 |
| PIRIOCRADUIE                                                                                   | 03 |

# **TABLE DES ILLUSTRATIONS**

| Figure 1 : Situation géographique des stations de contrôle de montaison de la Garonne (Golfech, Bazacle et Carbonne)                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 2 : Présentation synthétique du site de Golfech                                                                                                                            |
| Figure 3 : Site de l'usine hydroélectrique EDF de Golfech                                                                                                                         |
| Figure 4 : Schéma présentant les deux entrées de l'ascenseur à poissons de Golfech et la passe à anguilles                                                                        |
| Figure 5 : Présentation synthétique du site du Bazacle                                                                                                                            |
| Figure 6 : Photos de la chaussée du Bazacle et de la passe à bassins                                                                                                              |
| Figure 7 : Présentation synthétique du site de Carbonne                                                                                                                           |
| Figure 8 : Bilan de fonctionnement de l'ascenseur à poissons de Golfech en 202012                                                                                                 |
| Figure 9 : Pourcentage d'arrêt et de fonctionnement de l'ascenseur à poissons de Golfechentre 1995 et 2020                                                                        |
| Figure 10 : Pourcentage d'arrêt et de fonctionnement de l'ascenseur à poissons de Golfech entre 1995 et 2020 pendant la période de migration (15 février – 15 juillet)            |
| Figure 11 : Bilan de fonctionnement des passes à poissons du Bazacle en 202014                                                                                                    |
| Figure 12 : Pourcentage d'arrêt et de fonctionnement des passes à poissons du Bazacle entre 1993 et 202016                                                                        |
| Figure 13 : Bilan de fonctionnement de la passe à poissons de Carbonne en 202017                                                                                                  |
| Figure 14 : Pourcentage d'arrêt et de fonctionnement de la passe à poissons de Carbonne entre 2000 et 202017                                                                      |
| Figure 15 : Comparaison des débits moyens mensuels à Golfech en 2020 et des débits moyens mensuels enregistrés entre 1993 et 2019 (m³/s)                                          |
| Figure 16 : Comparaison des coefficients d'hydraulicité de la Garonne à Golfech entre 1993 et 202020                                                                              |
| Figure 17 : Comparaison des coefficients d'hydraulicité hebdomadaires de la Garonne à Golfech entre 1993 et 2020 pendant la période de migration (semaine 9 à 30, mars – juillet  |
| Figure 18 : Comparaison des débits moyens mensuels au Bazacle en 2020 et des débits moyens mensuels enregistrés entre 1993 et 2019 (m³/s)2                                        |
| Figure 19 : Comparaison des coefficients d'hydraulicité de la Garonne au Bazacle entre 1990 et 20202                                                                              |
| Figure 20 : Comparaison des coefficients d'hydraulicité hebdomadaires de la Garonne au Bazacle entre 1993 et 2020, pendant la période de migration (semaine 9 à 30, mars juillet) |
| Figure 21 : Comparaison des débits moyens mensuels à Carbonne en 2020 et des débits moyens mensuels enregistrés entre 2000 et 2019 (m³/s)                                         |
| Figure 22 : Comparaison des coefficients d'hydraulicité de la Garonne à Carbonne entre 1993 et 2020                                                                               |
| Figure 23 Evolution du coefficient d'hydraulicité moyen hebdomadaire de la Garonne en 2020 au niveau de Golfech, du Bazacle et de Carbonne                                        |

| Figure 24 : Comparaison des températures moyennes mensuelles à Golfech en 2020 et de températures moyennes mensuelles enregistrées entre 1993 et 2019                                      |    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 25 : Comparaison des températures moyennes mensuelles à Golfech en 2020 et de température moyenne mensuelle enregistrée sur la période 1993 et 2019                                 |    |
| Figure 26 : Comparaison des températures moyennes mensuelles au Bazacle en 2020 et de températures moyennes mensuelles enregistrées entre 1993 et 2019                                     |    |
| Figure 27 : Comparaison des températures moyennes mensuelles au Bazacle en 2020 et la température moyenne mensuelle enregistrées sur la période 1993 et 2019                               |    |
| Figure 28 : Comparaison des températures moyennes mensuelles à Carbonne en 2020 et de températures moyennes mensuelles enregistrées entre 2000 et 2019                                     |    |
| Figure 29 : Comparaison des températures moyennes mensuelles à Carbonne en 2020 et la température moyenne mensuelle enregistrées sur la période 2000 et 2019                               |    |
| Figure 30 : Comparaison des températures moyennes mensuelles au niveau de Golfech, Bazacle (période 1993 – 2020) et de Carbonne (2000 – 2020)                                              |    |
| Figure 31 : Bilan annuel des passages de poissons migrateurs au niveau de la station Golfech entre 1993 et 2020                                                                            |    |
| Figure 32 : Bilan annuel des passages de poissons migrateurs au niveau de la station Bazacle entre 1993 et 2020                                                                            |    |
| Figure 33 : Bilan annuel des passages de poissons migrateurs au niveau de la station Carbonne entre 2000 et 2020                                                                           |    |
| Figure 34 : Répartition mensuelle des aloses contrôlées à Golfech entre 1993 et 2020                                                                                                       | 33 |
| Figure 35 : Evolution des passages journaliers d'aloses à Golfech en 2020 en fonction du dé et de la température                                                                           |    |
| Figure 36 : Répartition des passages d'aloses (%) à l'ascenseur à poissons de Golfech fonction de classes de débit (pas de 50 m³/s) en 2020                                                |    |
| Figure 37 : Répartition des passages d'aloses (%) à l'ascenseur à poissons de Golfech fonction de classes de température (pas de 2°C)                                                      |    |
| Figure 38 : Bull d'alose (© Didier Taillefer/Sméag)                                                                                                                                        | 36 |
| Figure 39 : Modèle statistique sur la répartition des pontes au cours de la nuit (CASSC LEINS, 1985)                                                                                       |    |
| Figure 40 : Localisation géographique des zones de frayères en aval de Golfech sur Garonne                                                                                                 |    |
| Figure 41 : Localisation des trois sites favorables à l'enregistrement des bulls                                                                                                           | 38 |
| Figure 42 : Nombre de jours travaillés sur le projet de suivi de la reproduction de la gran alose sur la moyenne Garonne (MPALAG20) par le personnel de MIGADO en 2020                     |    |
| Figure 43 : Nombre de nuits suivies sur les différentes frayères d'aloses                                                                                                                  | 39 |
| Figure 44 : Nombre de ¼ d'heure suivis sur l'ensemble des frayères de grande alose en 20                                                                                                   |    |
| Figure 45 : Comparaison de la répartition nocturne de l'activité de ponte de la grande alose<br>2020 au niveau des frayères en aval de Golfech avec celle estimée par Cassou-Leins<br>1980 | en |
| Figure 46 : Frayères actives et nombre de géniteurs en 2020 sur le Lot (Aiguillon) et la Garon                                                                                             |    |
|                                                                                                                                                                                            | 41 |

| Figure 47 : Evolution des débits et de la température au cours de la saison en lien avec l'activité de reproduction41                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 48 : Evolution du stock de grande alose sur le bassin Garonne Dordogne entre 1994 et 202042                                                                                   |
| Figure 49 : Relation entre le nombre d'aloses observées à Golfech et le nombre d'aloses observées au Bazacle entre 1993 et 202043                                                    |
| Figure 50 : La passe à anguilles actuelle de Golfech. En A, la passe partie aval, en B, la passe partie amont avec le bassin tampon (bleu)44                                         |
| Figure 51 : Schéma de la rampe à anguilles définitive45                                                                                                                              |
| Figure 52 : Franchissements d'anguilles à Golfech de 1993 à 202046                                                                                                                   |
| Figure 53 :Passages journaliers en fonction du débit et de la température de l'eau47                                                                                                 |
| Figure 54 : Fonctionnement de l'ascenseur à poissons et de son débit d'attrait en 202048                                                                                             |
| Figure 55 : Répartition de débits > 80 m3/s dans le complexe Malause / Golfech49                                                                                                     |
| Figure 56 : Répartition de débits <= 80 m3/s dans le complexe Malause / Golfech49                                                                                                    |
| Figure 57 : Restitution du débit à l'usine de Golfech pendant l'étiage 202050                                                                                                        |
| Figure 58 : Pourcentage de passages horaires des anguilles à Golfech en 202051                                                                                                       |
| Figure 59 : Répartition par classes de tailles des anguillettes à Golfech en 202051                                                                                                  |
| Figure 60 : Evolution de la tailles des anguilles au cours de la saison 202052                                                                                                       |
| Figure 61 : Photo du système de comptage par résistivité52                                                                                                                           |
| Figure 62 : Photo du système de comptage vidéo Hizkia53                                                                                                                              |
| Figure 63 : Photo d'anguilles détectées par le système Hizkia en 2020 à Golfech54                                                                                                    |
| Figure 64 : Comparaison du fonctionnement des systèmes de comptage automatiques sur la saison 2020.                                                                                  |
| Figure 65 : Efficacité du compteur à résistivité en 202055                                                                                                                           |
| Figure 66 : Efficacité du compteur automatique vidéo en 202055                                                                                                                       |
| Figure 67 :Comparaison des tailles d'anguilles estimées en fonction du système de contrôle.<br>57                                                                                    |
| Figure 68 : Bilan comparatif des systèmes de comptage automatiques58                                                                                                                 |
| Figure 69 : Evolution annuelle des passages de lamproies à Golfech depuis 1993.  Comparaison avec Tuilières sur la Dordogne60                                                        |
| Figure 70 : Evolution des passages annuels de grands salmonidés à Golfech entre 1993 et 202062                                                                                       |
| Figure 71 : Saumons observés à la vitre de contrôle de Golfech62                                                                                                                     |
| Figure 72 : Répartition mensuelle des saumons contrôlés à Golfech entre 1993 et 202063                                                                                               |
| Figure 73 : Comparaison entre la répartition mensuelle des saumons contrôlés à Golfech en 2020 et la moyenne des observations sur la période 1993-2002 et sur la période 2003 – 2019 |
| Figure 74 : Evolution des passages journaliers de saumons à Golfech en 2020 en fonction du débit et de la température64                                                              |
| Figure 75 : Taille minimale, moyenne et maximale des saumons observés à Golfech entre                                                                                                |

| Golfech entre 1993 – 2002, 2003-2019 et celles observées en 2020                                                                                                                 |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Figure 77 : Répartition entre castillons et PHM selon différentes classes de tailles sur le bas de l'Adour (MIGRADOUR, com pers).                                                |      |
| Figure 78 : Répartition des 1 hiver de mer (1 HM, castillons), 2HM et 3 HM (plusieurs hive de mer) à Golfech entre 1993 et 2020                                                  |      |
| Figure 79 : Comparaison des passages hebdomadaires des saumons à Golfech et destinati des individus après piégeage en 2019 et 2020.                                              |      |
| Figure 80 : Evolution des piégeages de saumons depuis 2002 (date de fabrication du pièget destinations des individus capturés                                                    |      |
| Figure 81 : Saumon déversé sur l'Ariège                                                                                                                                          | 70   |
| Figure 82 : Répartition mensuelle des saumons contrôlés au Bazacle entre 1993 et 2020                                                                                            | 71   |
| Figure 83 : Saumons contrôlés au Bazacle en 2020                                                                                                                                 | 71   |
| Figure 84 : Comparaison entre la répartition mensuelle des saumons contrôlés au Bazacle 2020 et la moyenne des observations sur la période 1993-2002 et sur la période 2003 2019 | 3 –  |
| Figure 85 : Comparaison des passages cumulés de saumons par semaine sur les stations<br>Golfech et du Bazacle en 2020 et la moyenne des observations sur la période 2003 – 20    | 19   |
| Figure 86 : Evolution du taux de transfert des saumons sur la Garonne entre Golfech et Bazacle entre 1994 et 2020.                                                               | t le |
| Figure 87 : Emetteur radio (ATS), (2) Tag prédation, (3) Pit tag Tiris                                                                                                           | 75   |
| Figure 88 : localisation des différents récepteurs télémétrie sur la Garonne en 2020                                                                                             |      |
| Figure 89 : Piégeage des saumons radiomarqués à Golfech en fonction du débit et de température de l'eau en 2020                                                                  |      |
| Figure 90 : Evolution hebdomadaire des individus marqués et non marqués à Golfech et Bazacle en 2020                                                                             |      |
| Figure 91 : Position des saumons radiomarqués à Golfech le 22 avril 2020                                                                                                         | 77   |
| Figure 92 : Position des saumons radiomarqués à Golfech le 11 mai 2020                                                                                                           | 78   |
| Figure 93 : Position des saumons radiomarqués à Golfech le 10 juin 2020                                                                                                          | 78   |
| Figure 94 : Répartition mensuelle des saumons contrôlés à Carbonne entre 2000 et 2020 .                                                                                          | 79   |
| Figure 95 : Historique des saumons piégés à Carbonne ayant été transportés sur l'Ariège 2020                                                                                     |      |
| Figure 96 : Comparaison entre la répartition mensuelle des effectifs de saumons piégés Carbonne entre 2000-2019 et ceux piégés en 2020                                           |      |
| Figure 97 : Calendrier des migrations au niveau des 3 stations de contrôle en montaison de Garonne                                                                               |      |
| Figure 98 : Bilan des passages annuels des principales espèces de rivière à Golfech en 1993 et 2020.                                                                             |      |
| Figure 99 : Bilan des passages annuels des principales espèces de rivière au Bazacle en 1993 et 2020                                                                             |      |
| Figure 100 : Bilan des passages annuels des principales espèces de rivière à Carbonne en 1993 et 2020                                                                            |      |

| Figure 101 : Saumon « effarouché » par un silure dans le canal de transfert de Golfech83                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure 102 : Schéma du canal de transfert de l'ascenseur à poissons de Golfech84                                                                                                                        |
| Figure 103 : Photo de l'ancienne grille située à l'amont du canal de transfert (gauche) e nouvelle grille « anti-retour » mise en place sur le site de Golfech en amont du canal de transfert en 201788 |
| Figure 104 : Passage horaire des saumons et silures du 1/01 au 24/04 à Golfech en 2020.86                                                                                                               |
| Figure 105 : Evolution journalière des passages de saumons et silures à Golfech entre le 15/03/2020 et le 15/07/2020 en fonction du débit et de la température de l'eau                                 |
| Figure 106 : Bilan des vidange du canal de transfert et valorisation des silures capturés er 2020 à Golfech88                                                                                           |
| Figure 107 : Evolution des passages de silures en fonction de la délivrance du débit d'attrai de l'ascenseur à poissons                                                                                 |
| Figure 108 : Nombre de silures empruntant l'ascenseur à poissons en fonction du fonctionnement du débit d'attrait entre le 17 mai et le 10 juillet 2020 (période de la migration de l'anguille)89       |
| Figure 109 : Observation des silures en aval de l'ascenseur à poissons de Golfech en 2020                                                                                                               |
|                                                                                                                                                                                                         |

#### INTRODUCTION

Les contrôles des espèces tant amphibiotiques qu'holobiotiques ont pour objectif de connaître l'abondance des poissons fréquentant le bassin, ainsi que leurs caractéristiques et leurs comportements à des fins :

- de connaissance des peuplements et de suivi des tendances à moyen et long terme (partie intégrante de l'observatoire de la faune piscicole) ;
  - de gestion des espèces exploitées ;
  - d'évaluation et retour d'expérience des opérations de restauration ;
- et, de façon annexe, d'amélioration des techniques du génie piscicole (dispositifs de franchissement par exemple).

### Ce qui implique :

- une pérennité du fonctionnement de la station de contrôle afin de tenir compte de la durée des cycles biologiques des espèces, du temps de réponse des interventions et de l'indispensable prise en compte des fluctuations d'abondance inter-annuelles ;
- une recherche de données quantitatives, et donc le respect strict d'un protocole garantissant une saisie homogène et une bonne reproductibilité (EUZENAT et al., 1994).

Sur la Garonne, un premier contrôle est réalisé au niveau de la station de Golfech qui est couplée au dispositif de franchissement (l'ascenseur à poissons). La colonisation par les espèces de tout le bassin amont dépend essentiellement du bon fonctionnement de cet outil. Une deuxième station de contrôle est située 100 km en amont, au niveau de l'usine hydroélectrique du Bazacle, couplée à la passe à bassin et à la passe à ralentisseur. Enfin, lorsque les grands salmonidés migrent sur la Garonne en amont de Toulouse, ils sont capturés au niveau de la station de piégeage de Carbonne, premier ouvrage d'une série de 19 barrages, puis transportés sur les zones de reproduction les plus favorables du bassin.

Chaque année, depuis 1993 pour Golfech et le Bazacle et 2000 pour la station de Carbonne, les données de passages de poissons sont analysées et mises en perspective pour 1) évaluer les mesures de gestion mises en place pour les espèces amphihalines, 2) appréhender l'efficacité des dispositifs de franchissement et, le cas échéant, proposer avec nos partenaires une optimisation de fonctionnement 3) proposer des actions permettant de répondre au mieux aux exigences des espèces et ainsi contribuer à leur bon développement sur notre bassin.

Le présent rapport a pour objectif de rendre compte, comme les années précédentes :

- du bilan de fonctionnement des dispositifs de franchissement de Golfech, du Bazacle et de Carbonne en 2020 ;
- du bilan de fonctionnement de l'enregistrement vidéo et du système d'analyse d'images (moyens de contrôle) ;
- du bilan des passages des poissons à l'amont et de la mise en parallèle des rythmes de migration observés avec l'évolution des principaux paramètres enregistrés ;

- de l'estimation du stock reproducteur de grande alose observé sur les frayères situées en aval de l'usine hydroélectrique de Golfech ;
- du bilan du protocole mis en place pour gérer les silures dans le dispositif de franchissement ;
- du bilan sur les opérations de transport de géniteurs de saumons sur l'Ariège après piégeage à Golfech, opérations optimisées en 2020 pour permettre l'accès aux frayères du bassin au plus grand nombre de saumons.

Comme en 2019, il a été décidé de réaliser un rapport unique sur la migration des espèces sur la Garonne afin d'avoir sur un même document une vision globale de la situation de ces migrateurs à l'échelle du bassin.

## 1 PRESENTATION GENERALE

Lors de leur migration de montaison, les poissons rencontrent de nombreux obstacles, conséquences des activités humaines et notamment des barrages hydroélectriques. L'équipement de ces ouvrages avec des dispositifs spécifiques de franchissement (passes à poissons par exemple) est obligatoire afin de permettre la libre circulation des espèces (c'est-à-dire assurer leurs différentes migrations). Afin de connaître l'efficacité de ces dispositifs mais aussi de suivre la dynamique des populations de migrateurs, des systèmes de comptage sont parfois mis en place au niveau des dispositifs de franchissement.

MIGADO gère 3 stations de contrôle des migrations de montaison sur la Garonne : Golfech, le Bazacle et Carbonne. Sur ces sites, des données sont enregistrées en continu et analysées minutieusement afin de dégager des informations fondamentales pour la gestion des espèces amphibalines (abondance, migration de reproduction ou colonisation de la rivière), Figure 1.

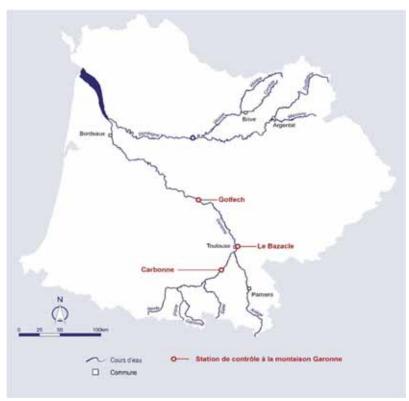



Figure 1 : Situation géographique des stations de contrôle de montaison de la Garonne (Golfech, Bazacle et Carbonne)

#### 1.1 Site de Golfech

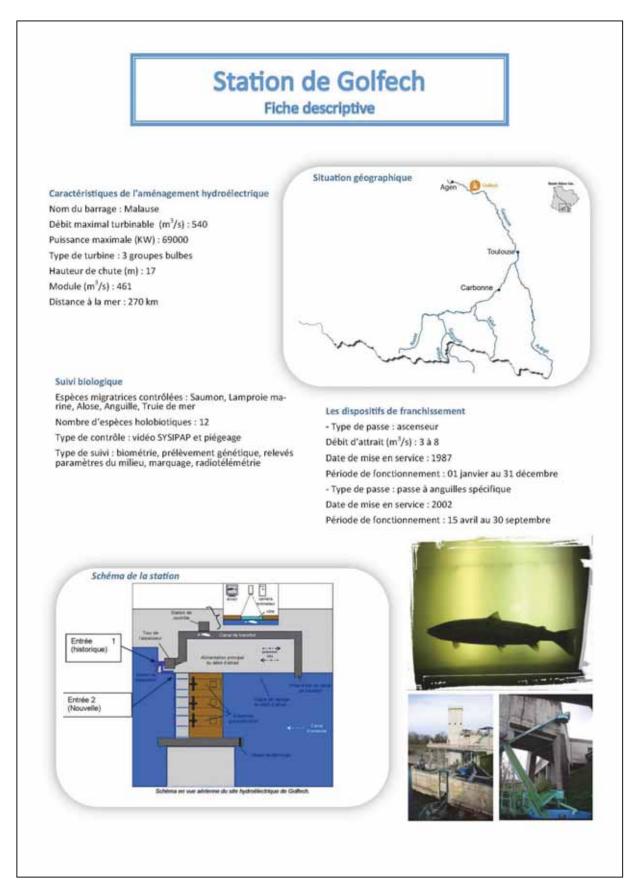



Figure 2 : Présentation synthétique du site de Golfech

L'aménagement hydroélectrique EDF de Golfech se compose d'un barrage mobile, situé à Malause, court-circuitant une quinzaine de kilomètres de la Garonne (débit réservé entre 10 m³/s et 20 m³/s suivant les périodes de l'année) pour alimenter par un canal d'amenée de 10 Km de longueur l'usine équipée de trois groupes bulbes turbinant un débit maximal de 540 m³/s. Le débit turbiné est restitué en Garonne par un canal de fuite de 2 Km de longueur (Figure 3).

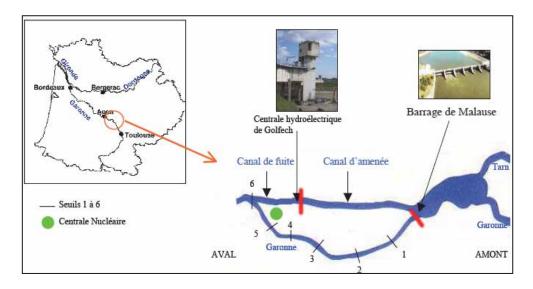



Figure 3 : Site de l'usine hydroélectrique EDF de Golfech

Le principe de l'ascenseur consiste à capturer les poissons au pied d'un obstacle dans une cuve contenant une quantité d'eau appropriée à leur nombre puis à remonter cette cuve et à la déverser en amont. Il se compose d'une partie basse assurant l'attraction, la capture et la stabulation des poissons, d'une partie intermédiaire (la tour) supportant le dispositif de relevage de la cuve de 3.3 m³ et d'une partie haute (le canal de transfert) assurant le transit des poissons vers le canal d'amenée (Figures 3 et 4).

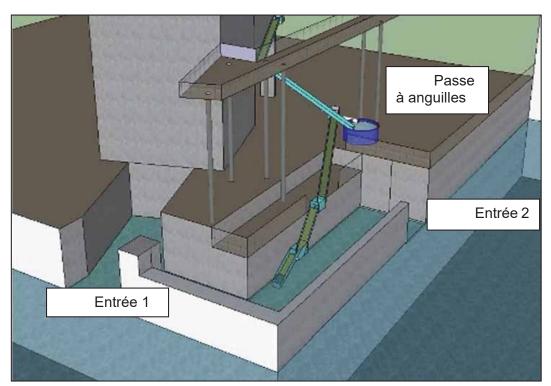



Figure 4 : Schéma présentant les deux entrées de l'ascenseur à poissons de Golfech et la passe à anguilles.

Au cours de l'année 2002, une rampe expérimentale à anguilles a été mise en service en rive droite. Elle se situe pour des raisons de facilité dans l'enceinte de l'ascenseur à poissons au niveau de la partie basse, ce qui lui permet de profiter du débit d'attrait de l'ascenseur à poissons. Cette rampe expérimentale, inclinée de 35° et mesurant 10 m, a été agrandie en 2008 pour permettre un franchissement total de l'obstacle. Depuis cette date, la passe mesure 40 m de long et permet de franchir le dénivelé total du barrage de Golfech, soit 17 m de haut. A l'amont, un bac vivier de 1 m³ permet de réceptionner les anguillettes empruntant la passe.

La passe est équipée d'une plaque de PVC sur laquelle sont implantés des filaments synthétiques montés en touffes, espacés de 2,5 cm sur les bords et de 1,5 cm au centre pour satisfaire toutes les tailles d'anguilles. Le tout est recouvert d'un grillage métallique empêchant la prédation et le dérangement par les oiseaux lors de l'ascension.

La rampe spécifique est constituée de deux parties :

- la passe inférieure (ou aval) repose sur le fond de l'enceinte de l'ascenseur, à proximité de l'entrée et attire les anguilles à l'aide d'un débit d'attrait spécifique supplémentaire. Ce débit provient directement par gravité d'une canalisation implantée dans le canal de transfert situé 10 m plus haut. Les anguilles remontant cette passe inférieure tombent dans le bassin tampon de 4 m³ empêchant une éventuelle dévalaison ;
- la passe supérieure (ou amont) est, quant à elle, constituée d'une rampe séparée par trois bacs de repos intermédiaires. Les anguilles, qui ont franchi la totalité de la passe, tombent dans un compteur à résistivité (permettant le comptage des individus) et sont alors déversées directement dans le canal de transfert.

### 1.2 Site du Bazacle

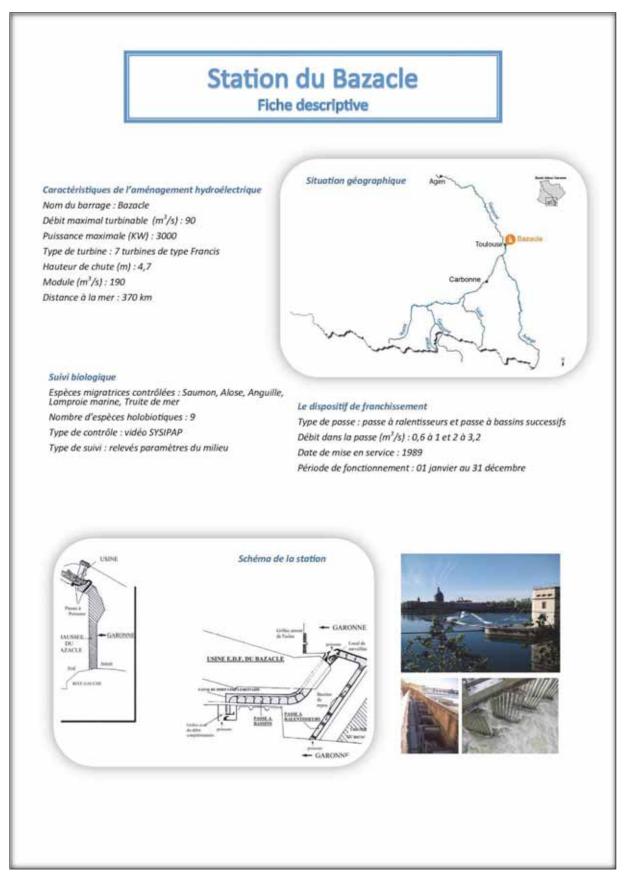
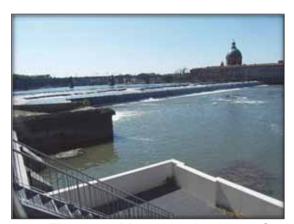



Figure 5 : Présentation synthétique du site du Bazacle


L'aménagement hydroélectrique du Bazacle, situé à 370 km de l'océan se compose d'une chaussée de 270 m de longueur pour une hauteur de chute maximum de 4.5 m. La superficie du bassin versant au niveau de l'aménagement est d'environ 10 000 km², et le module au droit de l'ouvrage est de 187 m³/s.

En 1989, une passe à poissons à bassins successifs a été construite au niveau de la centrale hydroélectrique du Bazacle. L'objectif principal de ce système de franchissement est de permettre à la faune piscicole, et aux grands migrateurs de la Garonne en particulier, de regagner des zones favorables à l'accomplissement de leur cycle de vie. Ainsi, pour les grands salmonidés, il s'agit d'un passage obligé pour se reproduire du fait de l'absence de zones de frayères fonctionnelles en aval de l'ouvrage. Par ailleurs, il existe une ancienne passe à ralentisseurs sur le site, rénovée en 1989, qui fonctionne en complément de la passe à bassins. Elle est située entre la chaussée et l'usine hydroélectrique.

La mise en service de la station de contrôle du Bazacle a été faite en 1989 avec un suivi en continu et homogène de toutes les espèces piscicoles à partir de 1993.

La station de contrôle du Bazacle a pour objectifs 1) de connaître l'abondance des poissons migrateurs susceptibles de coloniser les zones de reproduction et/ou de grossissement situées en amont de l'obstacle 2) d'effectuer une veille écologique sur les espèces de rivière. Elle permet notamment de calculer la fraction de la population de grands salmonidés issus des comptages de Golfech qui est susceptible de se reproduire sur le haut bassin de la Garonne et de l'Ariège.

Afin de comptabiliser l'ensemble des individus qui empruntent les systèmes de franchissement, le site du Bazacle est équipé du même système informatique qu'à Golfech, à savoir un système vidéo couplé à un logiciel d'analyse d'images (SYSIPAP). Au-delà du simple comptage, les espèces sont déterminées par un opérateur qui relève également la taille de certains individus (saumons, silures, aloses), l'état sanitaire et éventuellement le sexe du poisson.



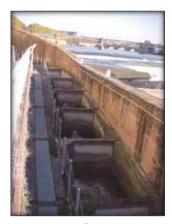



Figure 6 : Photos de la chaussée du Bazacle et de la passe à bassins.

### 1.3 Site de Carbonne

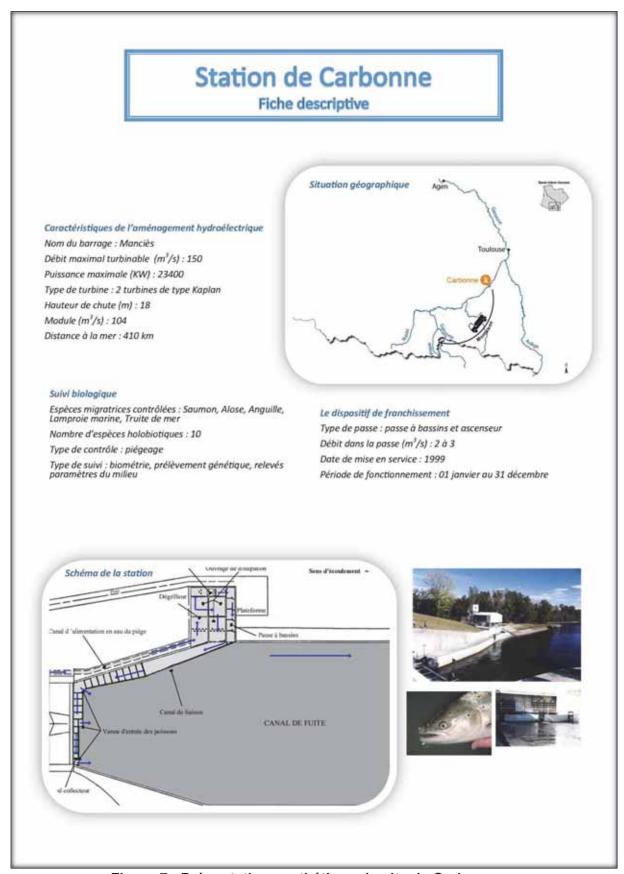



Figure 7 : Présentation synthétique du site de Carbonne

L'aménagement hydroélectrique de Carbonne est situé sur la Garonne à 410 km de l'océan pour un bassin versant d'environ 5250 km² et constitue à l'heure actuelle la limite amont des zones librement accessibles par les poissons migrateurs. Le module de la Garonne au niveau de cette station est de 104 m³/s. La mise en service de la station de Carbonne a été faite en 1999.

Le piégeage- transport à la station de Carbonne s'intègre dans une stratégie de restauration du saumon atlantique sur le haut bassin de la Garonne. Ainsi, ces opérations consistent, d'une part, au piégeage, au tri et au chargement des poissons migrateurs dans le véhicule et, d'autre part, au transport des poissons. Jusqu'en 2018, les poissons amphibiotiques étaient déversés sur les zones de reproduction de la Garonne amont, notamment sur la Pique en ce qui concerne les saumons atlantiques alors que les espèces holobiotiques étaient remises à l'eau à l'aval du barrage, dans le canal de fuite de l'usine. Avec la réorientation du plan saumon sur le bassin de la Garonne, il a été acté au sein du groupe Garonne du COGEPOMI de transporter les grands salmonidés sur le bassin de l'Ariège, au droit de Varilhes, afin de concentrer toute la reproduction naturelle des saumons du bassin de la Garonne sur ce secteur à fort potentiel.

Le suivi biologique des poissons migrateurs prend en compte le dénombrement et l'identification des espèces migratrices, le relevé des caractéristiques biométriques, les prélèvements génétiques des saumons (morceau de nageoire et écailles) et l'enregistrement des paramètres du milieu. Enfin, si des saumons piégés présentent un état sanitaire dégradé (blessures notamment), ils pourront, après expertise, être transportés au centre de reconditionnement de Bergerac.

#### 1.4 Déroulement de l'étude

#### 1.4.1 Recueil de paramètres

Selon la période de l'année, les paramètres suivants font l'objet de relevés systématiques :

- le fonctionnement des systèmes de franchissement avec les causes des dysfonctionnements et/ou des arrêts volontaires (entretien, crue) ;
  - les débits de la Garonne au niveau des 3 stations de contrôle ;
- la température de l'eau à l'aide d'une sonde de type Tinytag TG-4100 qui enregistre la donnée au niveau du canal de transfert toutes les heures. La sonde est positionnée à 1 m sous le niveau de l'eau.

#### 1.4.2 Moyen de contrôle

#### 1.4.2.1 Dispositif d'analyse d'image

Le système de vidéo contrôle mis en place sur le site de Golfech et au Bazacle est celui mis au point conjointement par le pôle éco hydraulique (anciennement GHAAPPE dirigé par Michel Larinier) et l'ENSEEIHT par l'équipe de Michel Cattoen.

Le principe est le suivant : les silhouettes des poissons sont binarisées, compressées et stockées en temps réel sur support informatique. Un logiciel permet ensuite de dépouiller manuellement les séquences enregistrées.

A Carbonne, le contrôle est effectué par piégeage et détermination des espèces après vidange partielle du bassin de réception de l'ascenseur à poissons. Cependant, à chaque remontée de cuve, un enregistrement numérique est effectué, automatiquement, avec prise de vue par le dessus. Ce système, uniquement intéressant pour les grands salmonidés, permet de déterminer l'heure de passage des individus.

#### 1.4.3 Conditions de contrôle

Le dépouillement des fichiers informatiques est assuré dans son intégralité et effectué au fur et à mesure des enregistrements. Les individus appartenant aux espèces de grands salmonidés migrateurs font l'objet d'un double contrôle compte tenu de leur importance et de la difficulté à les reconnaître. L'ensemble des données est mis à jour sur le site Internet de l'association (<a href="https://www.migado.fr">www.migado.fr</a>).

## 2 BILAN DE FONCTIONNEMENT

## 2.1 Le fonctionnement du dispositif de franchissement de Golfech

| ANNEE        | Durée  | Durée de       | D             | Causes de arrêts |           |            |       |                                              |
|--------------|--------|----------------|---------------|------------------|-----------|------------|-------|----------------------------------------------|
| 2020         | totale | fonctionnement | Durée d'arrêt | Crue             | Entretien | Volontaire | Panne | Observations                                 |
| Janvier      | 744h   | 00h00          | 744h00        | 00h00            | 744h00    | 00h00      | 00h00 | Entretien annuel                             |
| Février      | 696h   | 417h30         | 278h30        | 00h00            | 278h30    | 00h00      | 00h00 | Entretien annuel                             |
| Mars         | 744h   | 583h00         | 161h00        | 159h00           | 00h00     | 02h00      | 00h00 | crue                                         |
| Avril        | 720h   | 674h00         | 46h00         | 46h00            | 00h00     | 00h00      | 00h00 | crue                                         |
| Mai          | 744h   | 580h00         | 164h00        | 164h00           | 00h00     | 00h00      | 00h00 | crue                                         |
| Juin         | 720h   | 651h00         | 69h00         | 68h00            | 01h00     | 00h00      | 00h00 | crue                                         |
| Juillet      | 744h   | 439h00         | 305h00        | 00h00            | 00h00     | 305h00     | 00h00 | Q attrait 10m3 arret usine pr<br>pompage nuc |
| Août         | 744h   | 405h00         | 339h00        | 00h00            | 00h00     | 339h00     | 00h00 | nettoyage plan de grilles                    |
| Septembre    | 720h   | 228h00         | 492h00        | 00h00            | 00h00     | 492h00     | 00h00 | nettoyage plan de grilles                    |
| Octobre      | 744h   | 744h00         | 00h00         | 00h00            | 00h00     | 00h00      | 00h00 |                                              |
| Novembre     | 720h   | 256h00         | 464h00        | 00h00            | 464h00    | 00h00      | 00h00 | Entretien annuel                             |
| Décembre     | 744h   | 00h00          | 744h00        | 00h00            | 744h00    | 00h00      | 00h00 | Entretien annuel                             |
|              |        |                |               |                  |           |            |       |                                              |
| Total        | 8784h  | 4977h          | 3806h30       | 437h00           | 2231h30   | 1138h00    | 00h00 |                                              |
| % Total      |        | 57%            | 43%           | 5%               | 25%       | 13%        | 0%    |                                              |
| % des arrêts |        |                |               | 11.5%            | 58.6%     | 29.9%      | 0.0%  |                                              |

Figure 8 : Bilan de fonctionnement de l'ascenseur à poissons de Golfech en 2020

Sur les 8 784 heures de fonctionnement théorique, l'ascenseur à poissons a fonctionné 4977 h, soit environ 57 % du temps. Excepté les périodes d'entretien annuel, (janvier-février et novembre décembre, hors période de migration, plusieurs faits marquants sont à noter :

- De nombreux coups d'eau ont entrainé des arrêts de l'ascenseur à poissons entre mars et avril. Ces crues n'ont pas été de très fortes intensité (1700 m3 le 7 mars, 1000 m3/s le 23 avril, 1700 m3/s le 12 mai, 1040 m3/s le 13 juin) mais ont très certainement perturbé les migrations.
- Les faibles débits observés à partir du 13 juillet (< = 80 m3/s), couplés aux fortes températures de l'eau (> 26°C) ont posé de gros problèmes de fonctionnement des dispositifs de franchissements car :
  - o Le débit réservé à cette époque de l'année est de 40 m3/s
  - o Le débit minimum turbinable est de 35-40 m3/s
  - Le débit minimum dans le canal de fuite doit être de 10 m3/s pour pallier les contraintes de pompage de la centrale nucléaire

Ainsi, lorsque le débit entrant est inférieur à 80 m3/s, le débit pouvant transiter jusqu'à l'usine n'excède pas 40 m3/s et est insuffisant pour transiter par une turbine alors même que 10 m3/s doivent passer pour transiter dans le canal de fuite. Cette situation est récente (2019) puisque précédemment, le débit réservé était de 20 m3/s. Ainsi, il a été décidé dans un premier temps de délivrer les 10 m3/s par le clapet de l'ascenseur à poissons dégradant de fait son fonctionnement mais également l'attractivité de la passe à anguilles. Après discussions entre MIGADO et le personnel EDF de l'usine hydroélectrique, ces 10 m3/s ont été délivrés quelques nuits par semaine par le clapet de décharge pour permettre de faire fonctionner correctement la passe à anguille. Ce clapet est un organe de sécurité de l'usine et est non adapté « en routine » pour cette utilisation, nécessitant une veille de la part du personnel.

- En aout-septembre, la situation a été différente car de gros travaux de nettoyage du

plan de grilles ont été entrepris, condamnant de fait la délivrance du débit de 10 m3/s par le clapet de décharge pour éviter la mise en danger du personnel chargé du nettoyage. Les débits de la Garonne ayant été toujours très faibles pendant cette période, les 10 m3/s ont été délivrés par le clapet de l'ascenseur à poissons, condamnant son fonctionnement ainsi que celui de la passe à anguilles

Cette situation qui risque fortement de se renouveler lors des prochains étiages, ne peut perdurer en 2021. Le personnel EDF travaille avec MIGADO à un protocole de fonctionnement des systèmes de franchissement intégrant les différentes contraintes liées aux exploitations de l'hydraulique, du nucléaire mais ne dégradant pas la migration des poissons, notamment l'anguille qui est raisonnablement la seule espèce impactée, la migration des autres migrateurs se déroulant classiquement hors période d'étiage.

Depuis 1995, les arrêts de l'ascenseur sont systématiquement consignés dans un fichier et classés selon 4 classes : Crue, Entretien, Volontaire et Panne. Certains arrêts, comme les crues, sont inéluctables et sont le fait même de la conception de l'ouvrage de franchissement, calé pour fonctionner jusqu'à des débits atteignant 2 fois le module (environ 900 m³/s à Golfech). Par ailleurs, les échanges réguliers entre les exploitants EDF et MIGADO permettent d'anticiper les problèmes techniques et de réduire autant que possible les périodes d'entretien ou de pannes.

| Année | Fonctionnement | Crue  | Entretien | Arrêt volontaire | Panne |
|-------|----------------|-------|-----------|------------------|-------|
| 1995  | 41.4%          | 21.3% | 12.5%     | 21.6%            | 3.2%  |
| 1996  | 41.4%          | 26.6% | 27.1%     | 3.4%             | 1.6%  |
| 1997  | 68.4%          | 11.2% | 0.3%      | 20.0%            | 0.0%  |
| 1998  | 68.6%          | 5.7%  | 22.6%     | 1.8%             | 1.3%  |
| 1999  | 62.6%          | 24.1% | 8.7%      | 2.7%             | 1.9%  |
| 2000  | 71.4%          | 14.2% | 9.1%      | 5.4%             | 0.0%  |
| 2001  | 88.1%          | 4.1%  | 6.3%      | 1.4%             | 0.1%  |
| 2002  | 75.1%          | 7.2%  | 11.0%     | 0.4%             | 6.3%  |
| 2003  | 83.2%          | 11.3% | 4.8%      | 0.0%             | 0.6%  |
| 2004  | 83.3%          | 5.7%  | 10.6%     | 0.0%             | 0.4%  |
| 2005  | 91.4%          | 0.3%  | 6.5%      | 0.0%             | 1.8%  |
| 2006  | 89.9%          | 0.7%  | 8.7%      | 0.0%             | 0.7%  |
| 2007  | 91.7%          | 1.4%  | 6.3%      | 0.0%             | 0.7%  |
| 2008  | 83.7%          | 7.0%  | 8.8%      | 0.0%             | 0.4%  |
| 2009  | 79.9%          | 9.3%  | 8.6%      | 0.0%             | 2.3%  |
| 2010  | 57.0%          | 1.9%  | 5.2%      | 35.9%            | 0.0%  |
| 2011  | 75.5%          | 2.7%  | 0.0%      | 12.5%            | 9.2%  |
| 2012  | 90.7%          | 1.5%  | 4.9%      | 2.9%             | 0.0%  |
| 2013  | 72.9%          | 9.7%  | 16.5%     | 0.0%             | 0.9%  |
| 2014  | 84.0%          | 12.1% | 2.8%      | 0.9%             | 0.2%  |
| 2015  | 87.1%          | 7.0%  | 4.5%      | 1.5%             | 0.0%  |
| 2016  | 85.4%          | 4.1%  | 8.0%      | 1.6%             | 0.8%  |
| 2017  | 79.8%          | 3.0%  | 14.9%     | 0.4%             | 2.0%  |
| 2018  | 65.6%          | 23.8% | 9.8%      | 0.8%             | 0.0%  |
| 2019  | 65.6%          | 2.7%  | 30.8%     | 0.0%             | 0.9%  |
| 2020  | 57.0%          | 5.0%  | 25.0%     | 13.0%            | 0.0%  |

Figure 9 : Pourcentage d'arrêt et de fonctionnement de l'ascenseur à poissons de Golfech entre 1995 et 2020

| Année | Fonctionnement | Crue  | Entretien  | Arrêt volontaire | Panne |
|-------|----------------|-------|------------|------------------|-------|
| 1995  | 41.4%          | 21.3% | 12.5%      | 21.6%            | 3.2%  |
| 1996  | 41.4%          | 26.6% | 27.1% 3.4% |                  | 1.6%  |
| 1997  | 68.4%          | 11.2% | 0.3%       | 20.0%            | 0.0%  |
| 1998  | 68.6%          | 5.7%  | 22.6%      | 1.8%             | 1.3%  |
| 1999  | 62.6%          | 24.1% | 8.7%       | 2.7%             | 1.9%  |
| 2000  | 71.4%          | 14.2% | 9.1%       | 5.4%             | 0.0%  |
| 2001  | 88.1%          | 4.1%  | 6.3%       | 1.4%             | 0.1%  |
| 2002  | 75.1%          | 7.2%  | 11.0%      | 0.4%             | 6.3%  |
| 2003  | 83.2%          | 11.3% | 4.8%       | 0.0%             | 0.6%  |
| 2004  | 83.3%          | 5.7%  | 10.6%      | 0.0%             | 0.4%  |
| 2005  | 91.4%          | 0.3%  | 6.5%       | 0.0%             | 1.8%  |
| 2006  | 89.9%          | 0.7%  | 8.7%       | 0.0%             | 0.7%  |
| 2007  | 91.7%          | 1.4%  | 6.3%       | 0.0%             | 0.7%  |
| 2008  | 83.7%          | 7.0%  | 8.8%       | 0.0%             | 0.4%  |
| 2009  | 79.9%          | 9.3%  | 8.6%       | 0.0%             | 2.3%  |
| 2010  | 57.0%          | 1.9%  | 5.2%       | 35.9%            | 0.0%  |
| 2011  | 75.5%          | 2.7%  | 0.0%       | 12.5%            | 9.2%  |
| 2012  | 90.7%          | 1.5%  | 4.9% 2.9%  |                  | 0.0%  |
| 2013  | 72.9%          | 9.7%  | 16.5% 0.0% |                  | 0.9%  |
| 2014  | 84.0%          | 12.1% | 2.8%       | 0.9%             | 0.2%  |
| 2015  | 87.1%          | 7.0%  | 4.5%       | 1.5%             | 0.0%  |
| 2016  | 85.4%          | 4.1%  | 8.0%       | 1.6%             | 0.8%  |
| 2017  | 79.8%          | 3.0%  | 14.9%      | 0.4%             | 2.0%  |
| 2018  | 60.8%          | 37.2% | 0.2%       | 1.8%             | 0.0%  |
| 2019  | 92.9%          | 5.1%  | 0.2%       | 0.0%             | 1.8%  |
| 2020  | 80.0%          | 12.0% | 0.0%       | 8.0%             | 0.0%  |
| MOY   | 76.4%          | 9.5%  | 8.0%       | 4.7%             | 1.4%  |
| MIN   | 41.4%          | 0.3%  | 0.0%       | 0.0%             | 0.0%  |
| MAX   | 92.9%          | 37.2% | 27.1%      | 35.9%            | 9.2%  |

Figure 10 : Pourcentage d'arrêt et de fonctionnement de l'ascenseur à poissons de Golfech entre 1995 et 2020 pendant la période de migration (15 février – 15 juillet).

## 2.2 Le fonctionnement des dispositifs de franchissement du Bazacle

|              | Durée<br>totale | Durée de     |               |        |           | Ca         | use des | arrêts                                  |
|--------------|-----------------|--------------|---------------|--------|-----------|------------|---------|-----------------------------------------|
| ANNEE 2020   |                 | fonctionneme | Durée d'arrêt | Crue   | Entretien | Volontaire | Panne   | Observations                            |
| Janvier      | 744h00          | 606h00       | 138h00        | 138h00 | 00h00     | 00h00      | 00h00   |                                         |
| Février      | 696h00          | 310h00       | 386h00        | 00h00  | 386h00    | 00h00      | 00h00   | entretien annuel                        |
| Mars         | 744h00          | 686h00       | 58h000        | 58h00  | 00h00     | 00h00      | 00h00   |                                         |
| Avril        | 720h00          | 638h00       | 82h00         | 82h00  | 00h00     | 00h00      | 00h00   | *************************************** |
| Mai          | 744h00          | 640h00       | 104h00        | 104h00 | 00h00     | 00h00      | 00h00   |                                         |
| Juin         | 720h00          | 720h00       | 00h00         | 00h00  | 00h00     | 00h00      | 00h00   |                                         |
| Juillet      | 744h00          | 744h00       | 00h00         | 00h00  | 00h00     | 00h00      | 00h00   | •••••                                   |
| Août         | 744h00          | 744h00       | 00h00         | 00h00  | 00h00     | 00h00      | 00h00   | •••••                                   |
| Septembre    | 720h00          | 720h00       | 00h00         | 00h00  | 00h00     | 00h00      | 00h00   | *************************************** |
| Octobre      | 744h00          | 744h00       | 00h00         | 00h00  | 00h00     | 00h00      | 00h00   |                                         |
| Novembre     | 720h00          | 720h00       | 00h00         | 00h00  | 00h00     | 00h00      | 00h00   | *************************************** |
| Décembre     | 744h00          | 613h00       | 131h00        | 131h00 | 00h00     | 00h00      | 00h00   |                                         |
| TOTAL        | 8784h00         | 7885h00      | 899h00        | 513h00 | 386h00    | 00h00      | 00h00   |                                         |
| % Total      |                 | 90%          | 10%           | 6%     | 496       | 0%         | 0%      |                                         |
| % des arrêts |                 |              |               | 57%    | 43%       | 0%         | 0%      |                                         |

Figure 11 : Bilan de fonctionnement des passes à poissons du Bazacle en 2020

La passe à poissons du Bazacle a fonctionné 90 % du temps en 2020, plusieurs périodes de crues ont occasionné un arrêt du dispositif de franchissement (Janvier, Mars, Avril, Mai, Décembre). La période d'entretien, d'environ 2 semaines, a permis de faire des travaux améliorant l'accessibilité des bassins dans la passe à poissons pour réaliser les opérations de nettoyage des vitres de visualisation. Cependant, Le système vidéo a été stoppé le 1er décembre pour effectuer des travaux, à la demande d'EDF, dans le bureau où sont placés les ordinateurs d'analyse d'image.

| Années | Fonctionnement | Crue   | Entretien | Arrêt volontaire | Panne |
|--------|----------------|--------|-----------|------------------|-------|
| 1993   | 92.67%         | 6.56%  | 0.55%     | 0.19%            | 0.02% |
| 1994   | 97.49%         | 1.24%  | 0.00%     | 0.57%            | 0.71% |
| 1995   | 91.66%         | 7.27%  | 0.00%     | 0.70%            | 0.37% |
| 1996   | 87.79%         | 11.36% | 0.00%     | 0.07%            | 0.77% |
| 1997   | 97.22%         | 0.85%  | 0.00%     | 0.38%            | 1.54% |
| 1998   | 94.19%         | 4.45%  | 0.00%     | 0.55%            | 0.81% |
| 1999   | 92.53%         | 7.15%  | 0.00%     | 0.28%            | 0.03% |
| 2000   | 93.40%         | 6.35%  | 0.00%     | 0.25%            | 0.00% |
| 2001   | 86.97%         | 5.24%  | 0.00%     | 0.13%            | 7.66% |
| 2002   | 83.58%         | 9.39%  | 1.14%     | 1.09%            | 4.79% |
| 2003   | 90.33%         | 5.96%  | 3.16%     | 0.54%            | 0.00% |
| 2004   | 92.04%         | 5.06%  | 2.62%     | 0.28%            | 0.00% |
| 2005   | 96.82%         | 1.70%  | 0.90%     | 0.51%            | 0.08% |
| 2006   | 95.56%         | 0.37%  | 3.48%     | 0.22%            | 0.38% |
| 2007   | 93.84%         | 2.90%  | 2.77%     | 0.46%            | 0.03% |
| 2008   | 94.88%         | 3.07%  | 0.87%     | 1.13%            | 0.05% |
| 2009   | 90.31%         | 8.09%  | 1.15%     | 0.46%            | 0.00% |
| 2010   | 93.52%         | 4.92%  | 0.97%     | 0.31%            | 0.28% |
| 2011   | 93.39%         | 2.59%  | 3.17%     | 0.83%            | 0.02% |
| 2012   | 87.33%         | 2.42%  | 4.38%     | 0.53%            | 5.34% |
| 2013   | 77.41%         | 20.45% | 2.09%     | 0.05%            | 0.00% |
| 2014   | 91.21%         | 5.91%  | 2.79%     | 0.10%            | 0.00% |
| 2015   | 90.01%         | 7.55%  | 2.22%     | 0.22%            | 0.00% |
| 2016   | 95.21%         | 1.53%  | 2.91%     | 0.11%            | 0.24% |
| 2017   | 96.80%         | 0.17%  | 2.80%     | 0.14%            | 0.09% |
| 2018   | 79.41%         | 16.04% | 4.18%     | 0.32%            | 0.05% |
| 2019   | 89.87%         | 6.23%  | 3.89%     | 0.00%            | 0.00% |
| 2020   | 89.77%         | 5.84%  | 4.39%     | 0.00%            | 0.00% |
| MOY    | 91.26%         | 5.74%  | 1.80%     | 0.37%            | 0.83% |
| MIN    | 77.41%         | 0.17%  | 0.00%     | 0.00%            | 0.00% |
| MAX    | 97.49%         | 20.45% | 4.39%     | 1.13%            | 7.66% |

Figure 12 : Pourcentage d'arrêt et de fonctionnement des passes à poissons du Bazacle entre 1993 et 2020

La Figure12 montre que le fonctionnement de 2020 est dans la moyenne des années précédentes. Si on ne considère que la période de migration, les passes ont fonctionné 93 % du temps, les arrêts étant dus à des crues au mois d'avril mai et juin.

## 2.3 Le fonctionnement du dispositif de franchissement de Carbonne

| ANNEE 2020   | 0               | C 10 57401155458 | Durée d'arrêt | Cause des arrêts |                      |          |                                 |                               |  |
|--------------|-----------------|------------------|---------------|------------------|----------------------|----------|---------------------------------|-------------------------------|--|
|              | Durée<br>totale |                  |               | Crue             | Entretien<br>Travaux | Piégeage | Panne ou<br>arrêt<br>volontaire | Observations                  |  |
| Janvier      | 744h00          | 614h00           | 130h00        | 00h00            | 103h00               | 27h00    | 00h00                           | entretien annuel              |  |
| Février      | 696h00          | 667h00           | 29h00         | 00h00            | 00h00                | 29h00    | 00h00                           |                               |  |
| Mars         | 744h00          | 286h00           | 458h00        | 00h00            | 00h00                | 13h00    | 445b00                          | arrét confinement             |  |
| Avril        | 720h00          | 00h00            | 720h00        | 00±00            | 00h00                | 00h00    | 720h00                          | arrêt confinement             |  |
| Mai          | 744h00          | 369h00           | 375h00        | 111h00           | 00h00                | 14h00    | 250h00                          | arrêt confinement             |  |
| Juin         | 720h00          | 690h00           | 30h00         | 00h00            | 00h00                | 30h00    | .00h00                          |                               |  |
| Juillet      | 744b00          | 440h00           | 304h00        | 00h00            | 00h00                | 18h00    | 286h00                          | arrët volontaire              |  |
| Août         | 744h00          | 713h00           | 31h00         | 00h00            | 00h00                | 31h00    | 00h00                           |                               |  |
| Septembre    | 720h00          | 629h00           | 91h00         | 00h00            | 63h00                | 28h00    | 00h00                           | Travaux turbine débit attrait |  |
| Octobre      | 744h00          | 00h00            | 744h00        | 00h00            | 744b00               | 00h00    | 00h00                           | Travaux turbine débit attrait |  |
| Novembre     | 720h00          | 00h00            | 720h00        | 00h00            | 720h00               | 00ь00    | 00h00                           | Travaux turbine débit attrait |  |
| Décembre     | 744h00          | 00h00            | 744h00        | 00h00            | 744h00               | 00600    | 00h00                           | Travaux turbine debit attrait |  |
| TOTAL        | 8784h00         | 4408h00          | 4376h00       | 111h00           | 2374h00              | 190h00   | 1701h00                         |                               |  |
| % Total      |                 | 50,2%            | 49,8%         | 1,3%             | 27,0%                | 2,2%     | 19,4%                           |                               |  |
| % des arrêts |                 |                  |               | 346              | 5496                 | 496      | 39%                             |                               |  |

Figure 13 : Bilan de fonctionnement de la passe à poissons de Carbonne en 2020

| Années | Fonctionnement | Entretien | Travaux | Crue  | Piégeage |
|--------|----------------|-----------|---------|-------|----------|
| 2000   | 92.3%          | 0.2%      | 4.6%    | 0.9%  | 1.9%     |
| 2001   | 87.2%          | 4.6%      | 1.4%    | 2.1%  | 4.7%     |
| 2002   | 90.1%          | 4.0%      | 0.3%    | 0.9%  | 4.7%     |
| 2003   | 85.1%          | 9.2%      | 0.0%    | 2.0%  | 3.7%     |
| 2004   | 87.0%          | 4.4%      | 4.1%    | 0.9%  | 3.6%     |
| 2005   | 89.5%          | 2.0%      | 5.2%    | 0.3%  | 3.1%     |
| 2006   | 92.6%          | 4.2%      | 0.0%    | 0.0%  | 3.2%     |
| 2007   | 78.6%          | 2.9%      | 15.8%   | 0.0%  | 2.7%     |
| 2008   | 89.4%          | 1.9%      | 4.4%    | 1.2%  | 3.2%     |
| 2009   | 91.7%          | 3.0%      | 0.4%    | 1.7%  | 3.2%     |
| 2010   | 90.4%          | 5.5%      | 0.0%    | 1.0%  | 3.1%     |
| 2011   | 91.6%          | 2.9%      | 0.6%    | 1.1%  | 3.7%     |
| 2012   | 71.2%          | 0.0%      | 26.3%   | 0.0%  | 2.5%     |
| 2013   | 66.7%          | 0.0%      | 20.5%   | 10.5% | 2.3%     |
| 2014   | 88.5%          | 1.9%      | 0.0%    | 6.6%  | 3.1%     |
| 2015   | 91.3%          | 0.0%      | 2.7%    | 2.9%  | 3.1%     |
| 2016   | 93.5%          | 2.7%      | 0.0%    | 0.6%  | 3.2%     |
| 2017   | 92.7%          | 1.9%      | 2.2%    | 0.0%  | 3.2%     |
| 2018   | 60.4%          | 1.6%      | 14.5%   | 21.4% | 2.1%     |
| 2019   | 86.9%          | 1.9%      | 0.0%    | 8.2%  | 3.0%     |
| 2020   | 50.2%          | 46.4%     | 0.0%    | 1.2%  | 2.2%     |
| MOY    | 84.1%          | 4.8%      | 4.9%    | 3.0%  | 3.1%     |
| MIN    | 50.2%          | 0.0%      | 0.0%    | 0.0%  | 1.9%     |
| MAX    | 93.5%          | 46.4%     | 26.3%   | 21.4% | 4.7%     |

Figure 14 : Pourcentage d'arrêt et de fonctionnement de la passe à poissons de Carbonne entre 2000 et 2020.

Le dispositif de franchissement de Carbonne a connu un fonctionnement perturbé en 2020, avec une période d'arrêt due à la crise COVID de mars à mai (décision prise pour limiter les déplacements car pas de possibilité d'accès à la vidéo à distance comme sur le site du Bazacle et de Golfech) et l'arrêt du piège à partir du 28 septembre 2020 pour l'installation d'une turbine sur le débit d'alimentation de la passe à poissons.

## 3 CONDITIONS DE L'ENVIRONNEMENT

La progression des grands migrateurs étant largement influencée par les conditions environnementales, notamment le débit et la température de l'eau, il apparait important de situer les valeurs de ces deux paramètres enregistrés en 2020 par rapport à celles observées les années précédentes.

#### 3.1 Le débit de la Garonne au niveau des stations de contrôle.

Les valeurs de débits sont téléchargées à partir de la banque hydro sur le site <a href="http://www.eaufrance.fr">http://www.eaufrance.fr</a>, service public d'information sur l'eau.

#### 3.1.1 Le débit à Golfech

| QM_mensuels            | Janvier | Février | Mars | Avril | Mai | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | MOYENNE |
|------------------------|---------|---------|------|-------|-----|------|---------|------|-----------|---------|----------|----------|---------|
| 1993                   | 270     | 201     | 196  | 607   | 628 | 279  | 151     | 85   | 249       | 364     | 380      | 728      | 345     |
| 1994                   | 974     | 1156    | 506  | 998   | 738 | 354  | 127     | 63   | 230       | 359     | 643      | 225      | 531     |
| 1995                   | 614     | 829     | 718  | 340   | 360 | 227  | 113     | 70   | 197       | 152     | 217      | 654      | 374     |
| 1996                   | 1070    | 937     | 631  | 464   | 568 | 263  | 144     | 113  | 129       | 350     | 614      | 1485     | 564     |
| 1997                   | 769     | 455     | 243  | 155   | 220 | 137  | 115     | 154  | 121       | 110     | 207      | 491      | 265     |
| 1998                   | 522     | 229     | 256  | 484   | 492 | 199  | 89      | 88   | 121       | 237     | 259      | 342      | 276     |
| 1999                   | 559     | 557     | 452  | 443   | 990 | 277  | 110     | 122  | 123       | 207     | 477      | 531      | 404     |
| 2000                   | 333     | 597     | 358  | 547   | 427 | 652  | 167     | 101  | 118       | 250     | 318      | 364      | 353     |
| 2001                   | 553     | 505     | 586  | 575   | 615 | 248  | 214     | 85   | 89        | 131     | 143      | 119      | 322     |
| 2002                   | 130     | 255     | 301  | 288   | 409 | 472  | 188     | 154  | 165       | 250     | 510      | 727      | 321     |
| 2003                   | 625     | 947     | 641  | 387   | 351 | 228  | 66      | 55   | 117       | 126     | 310      | 691      | 379     |
| 2004                   | 1349    | 572     | 539  | 712   | 924 | 332  | 119     | 91   | 92        | 116     | 178      | 251      | 440     |
| 2005                   | 342     | 346     | 305  | 420   | 456 | 212  | 81      | 87   | 144       | 161     | 261      | 244      | 255     |
| 2006                   | 331     | 466     | 707  | 349   | 228 | 86   | 62      | 60   | 162       | 227     | 148      | 168      | 250     |
| 2007                   | 149     | 371     | 396  | 458   | 540 | 431  | 118     | 91   | 78        | 123     | 120      | 214      | 257     |
| 2008                   | 487     | 241     | 303  | 708   | 508 | 535  | 172     | 84   | 84        | 90      | 381      | 509      | 342     |
| 2009                   | 723     | 674     | 360  | 835   | 766 | 294  | 106     | 80   | 78        | 114     | 259      | 221      | 376     |
| 2010                   | 476     | 472     | 358  | 347   | 591 | 410  | 160     | 90   | 85        | 153     | 307      | 301      | 313     |
| 2011                   | 242     | 265     | 552  | 312   | 179 | 206  | 165     | 105  | 86        | 83      | 395      | 260      | 238     |
| 2012                   | 371     | 241     | 211  | 396   | 658 | 281  | 104     | 74   | 70        | 170     | 179      | 335      | 257     |
| 2013                   | 694     | 898     | 636  | 752   | 803 | 949  | 313     | 130  | 117       | 133     | 631      | 348      | 534     |
| 2014                   | 928     | 829     | 749  | 569   | 456 | 351  | 246     | 197  | 135       | 146     | 256      | 512      | 448     |
| 2015                   | 346     | 693     | 789  | 644   | 439 | 256  | 95      | 124  | 129       | 116     | 208      | 150      | 333     |
| 2016                   | 323     | 607     | 513  | 440   | 414 | 412  | 152     | 87   | 92        | 127     | 243      | 191      | 300     |
| 2017                   | 235     | 595     | 574  | 319   | 296 | 185  | 107     | 77   | 91        | 94      | 155      | 256      | 249     |
| 2018                   | 1006    | 856     | 649  | 747   | 845 | 775  | 287     | 117  | 98        | 190     | 317      | 289      | 515     |
| 2019                   | 288     | 635     | 241  | 284   | 345 | 227  | 98      | 93   | 82        | 189     | 523      | 1053     | 338     |
| 2020                   | 454     | 354     | 680  | 381   | 593 | 348  | 109     | 82   | 112       | 280     | 209      | 602      | 350     |
| MOYENNE<br>1993 - 2019 | 545     | 571     | 473  | 503   | 528 | 344  | 143     | 99   | 122       | 177     | 320      | 432      | 355     |

Figure 15 : Comparaison des débits moyens mensuels à Golfech en 2020 et des débits moyens mensuels enregistrés entre 1993 et 2019 (m³/s).

Au niveau de Golfech (débits issus de la station de Lamagistère), les débits de la Garonne en 2020 sont extrêmement contrastés avec des débits très faibles jusqu'à la mi-mars puis 4 coups d'eau entre mars et juin de faibles intensités (1700 m3/s max en mars et mai).

| Coef_hydrau | Janvier | Février | Mars | Avril | Mai  | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | Coef_an |
|-------------|---------|---------|------|-------|------|------|---------|------|-----------|---------|----------|----------|---------|
| 1993        | 0.50    | 0.35    | 0.41 | 1.21  | 1.19 | 0.81 | 1.05    | 0.86 | 2.05      | 2.06    | 1.19     | 1.69     | 0.97    |
| 1994        | 1.79    | 2.02    | 1.07 | 1.98  | 1.40 | 1.03 | 0.88    | 0.64 | 1.89      | 2.03    | 2.01     | 0.52     | 1.49    |
| 1995        | 1.13    | 1.45    | 1.52 | 0.68  | 0.68 | 0.66 | 0.79    | 0.70 | 1.62      | 0.86    | 0.68     | 1.51     | 1.05    |
| 1996        | 1.96    | 1.64    | 1.33 | 0.92  | 1.08 | 0.76 | 1.01    | 1.14 | 1.06      | 1.98    | 1.92     | 3.44     | 1.59    |
| 1997        | 1.41    | 0.80    | 0.51 | 0.31  | 0.42 | 0.40 | 0.80    | 1.55 | 0.99      | 0.62    | 0.65     | 1.14     | 0.75    |
| 1998        | 0.96    | 0.40    | 0.54 | 0.96  | 0.93 | 0.58 | 0.62    | 0.89 | 1.00      | 1.34    | 0.81     | 0.79     | 0.78    |
| 1999        | 1.03    | 0.97    | 0.96 | 0.88  | 1.88 | 0.81 | 0.77    | 1.23 | 1.01      | 1.17    | 1.49     | 1.23     | 1.14    |
| 2000        | 0.61    | 1.04    | 0.76 | 1.09  | 0.81 | 1.90 | 1.16    | 1.02 | 0.97      | 1.42    | 0.99     | 0.84     | 0.99    |
| 2001        | 1.01    | 0.88    | 1.24 | 1.14  | 1.17 | 0.72 | 1.49    | 0.86 | 0.73      | 0.74    | 0.45     | 0.27     | 0.91    |
| 2002        | 0.24    | 0.45    | 0.64 | 0.57  | 0.77 | 1.37 | 1.31    | 1.55 | 1.36      | 1.41    | 1.59     | 1.68     | 0.90    |
| 2003        | 1.15    | 1.66    | 1.35 | 0.77  | 0.66 | 0.66 | 0.46    | 0.55 | 0.96      | 0.72    | 0.97     | 1.60     | 1.07    |
| 2004        | 2.48    | 1.00    | 1.14 | 1.41  | 1.75 | 0.97 | 0.83    | 0.92 | 0.75      | 0.66    | 0.56     | 0.58     | 1.24    |
| 2005        | 0.63    | 0.61    | 0.65 | 0.83  | 0.86 | 0.62 | 0.57    | 0.88 | 1.19      | 0.91    | 0.82     | 0.57     | 0.72    |
| 2006        | 0.61    | 0.82    | 1.49 | 0.69  | 0.43 | 0.25 | 0.44    | 0.61 | 1.33      | 1.28    | 0.46     | 0.39     | 0.70    |
| 2007        | 0.27    | 0.65    | 0.84 | 0.91  | 1.02 | 1.26 | 0.83    | 0.91 | 0.64      | 0.70    | 0.38     | 0.49     | 0.72    |
| 2008        | 0.89    | 0.42    | 0.64 | 1.41  | 0.96 | 1.56 | 1.20    | 0.85 | 0.69      | 0.51    | 1.19     | 1.18     | 0.96    |
| 2009        | 1.33    | 1.18    | 0.76 | 1.66  | 1.45 | 0.85 | 0.74    | 0.81 | 0.64      | 0.64    | 0.81     | 0.51     | 1.06    |
| 2010        | 0.87    | 0.83    | 0.76 | 0.69  | 1.12 | 1.19 | 1.11    | 0.91 | 0.70      | 0.87    | 0.96     | 0.70     | 0.88    |
| 2011        | 0.44    | 0.46    | 1.17 | 0.62  | 0.34 | 0.60 | 1.15    | 1.06 | 0.71      | 0.47    | 1.23     | 0.60     | 0.67    |
| 2012        | 0.68    | 0.42    | 0.45 | 0.79  | 1.25 | 0.82 | 0.73    | 0.75 | 0.57      | 0.96    | 0.56     | 0.78     | 0.72    |
| 2013        | 1.27    | 1.57    | 1.34 | 1.50  | 1.52 | 2.76 | 2.18    | 1.31 | 0.96      | 0.75    | 1.97     | 0.81     | 1.50    |
| 2014        | 1.70    | 1.45    | 1.58 | 1.13  | 0.86 | 1.02 | 1.72    | 1.98 | 1.11      | 0.83    | 0.80     | 1.18     | 1.26    |
| 2015        | 0.64    | 1.21    | 1.67 | 1.28  | 0.83 | 0.75 | 0.67    | 1.25 | 1.06      | 0.65    | 0.65     | 0.35     | 0.94    |
| 2016        | 0.59    | 1.06    | 1.09 | 0.88  | 0.78 | 1.20 | 1.06    | 0.88 | 0.76      | 0.72    | 0.76     | 0.44     | 0.84    |
| 2017        | 0.43    | 1.04    | 1.21 | 0.63  | 0.56 | 0.54 | 0.74    | 0.78 | 0.75      | 0.53    | 0.49     | 0.59     | 0.70    |
| 2018        | 1.85    | 1.50    | 1.37 | 1.48  | 1.60 | 2.26 | 2.00    | 1.18 | 0.81      | 1.07    | 0.99     | 0.67     | 1.45    |
| 2019        | 0.53    | 1.11    | 0.51 | 0.56  | 0.65 | 0.66 | 0.68    | 0.93 | 0.68      | 1.07    | 1.64     | 2.44     | 0.95    |
| 2020        | 0.83    | 0.62    | 1.44 | 0.76  | 1.12 | 1.01 | 0.76    | 0.82 | 0.92      | 1.58    | 0.65     | 1.39     | 0.99    |

Figure 16 : Comparaison des coefficients d'hydraulicité de la Garonne à Golfech entre 1993 et 2020.

La Figure 16 montre, avec un code couleur, les coefficients d'hydraulicité enregistrés à Golfech sur la période 1993 – 2020 : plus la couleur tend vers le bleu foncé, plus le coefficient est supérieur à la moyenne des débits sur cette période, plus il tend vers le rouge foncé, plus le mois est considéré comme sec avec un coefficient faible. Ainsi, l'année 2020 s'inscrit dans une année particulièrement contrastée au niveau de Golfech avec des débits faibles en janvier février et avril et des débits soutenus lors des mois de mars et mai. Cependant, ces observations mensuelles lissent les épisodes de crues de courtes durées mais qui peuvent influencer la migration des poissons et/ou le fonctionnement des dispositifs de franchissement.

La figure 17 reprend selon le même principe les coefficients d'hydraulicité mais au pas de temps hebdomadaire, pendant la période de migration c'est-à-dire entre les semaines 9 et 30 (mars – juillet).

|             |      | 26   | 5/02 - 1/0 | 04   |      |      | 2/04 - | 29/04 |      |      | 30   | /04 - 03/ | 06   |      |      | 04/06/ | - 01/07 |      |      | 02/07/ | - 29/07 |      |
|-------------|------|------|------------|------|------|------|--------|-------|------|------|------|-----------|------|------|------|--------|---------|------|------|--------|---------|------|
| Coef_hydrau | 9    | 10   | 11         | 12   | 13   | 14   | 15     | 16    | 17   | 18   | 19   | 20        | 21   | 22   | 23   | 24     | 25      | 26   | 27   | 28     | 29      | 30   |
| 1993        | 0.37 | 0.40 | 0.34       | 0.45 | 0.48 | 0.62 | 0.77   | 1.19  | 1.96 | 1.66 | 1.07 | 1.08      | 1.17 | 0.89 | 0.71 | 0.71   | 1.06    | 1.02 | 1.10 | 1.26   | 0.83    | 1.01 |
| 1994        | 1.38 | 1.15 | 1.00       | 0.98 | 0.84 | 1.78 | 3.02   | 1.73  | 1.75 | 1.27 | 1.28 | 1.94      | 1.28 | 1.04 | 1.02 | 0.71   | 0.87    | 1.97 | 1.21 | 0.85   | 0.68    | 0.59 |
| 1995        | 2.93 | 2.24 | 1.24       | 1.17 | 0.91 | 0.75 | 0.60   | 0.56  | 0.79 | 0.57 | 0.62 | 0.82      | 0.72 | 0.70 | 0.61 | 0.61   | 0.71    | 0.79 | 0.94 | 0.91   | 0.73    | 0.55 |
| 1996        | 1.97 | 0.99 | 1.42       | 1.42 | 1.41 | 1.17 | 0.76   | 0.92  | 0.80 | 0.98 | 1.40 | 1.16      | 0.94 | 0.81 | 0.90 | 0.55   | 0.75    | 0.84 | 0.84 | 1.23   | 0.77    | 1.16 |
| 1997        | 0.58 | 0.50 | 0.48       | 0.56 | 0.47 | 0.38 | 0.31   | 0.26  | 0.25 | 0.39 | 0.46 | 0.49      | 0.40 | 0.36 | 0.38 | 0.30   | 0.49    | 0.57 | 0.85 | 0.92   | 0.70    | 0.74 |
| 1998        | 0.32 | 0.37 | 0.78       | 0.66 | 0.53 | 0.53 | 0.55   | 1.30  | 1.31 | 1.57 | 0.91 | 0.82      | 0.56 | 0.59 | 0.67 | 0.56   | 0.48    | 0.56 | 0.70 | 0.61   | 0.48    | 0.64 |
| 1999        | 0.94 | 1.10 | 0.86       | 0.81 | 0.98 | 0.69 | 0.66   | 1.04  | 1.06 | 1.64 | 1.86 | 1.91      | 2.37 | 1.16 | 0.97 | 0.67   | 0.62    | 0.75 | 0.70 | 0.72   | 0.77    | 0.77 |
| 2000        | 0.89 | 0.66 | 0.59       | 0.63 | 1.04 | 1.00 | 0.82   | 1.15  | 1.33 | 0.86 | 0.90 | 0.83      | 0.64 | 0.74 | 0.83 | 4.21   | 1.50    | 1.19 | 1.11 | 1.09   | 1.42    | 1.09 |
| 2001        | 0.64 | 0.97 | 1.72       | 1.32 | 1.31 | 1.14 | 1.78   | 0.97  | 0.80 | 1.27 | 1.25 | 1.16      | 1.05 | 0.76 | 0.63 | 0.79   | 0.75    | 0.75 | 1.48 | 1.48   | 1.91    | 1.31 |
| 2002        | 0.71 | 0.72 | 0.60       | 0.69 | 0.45 | 0.59 | 0.80   | 0.56  | 0.45 | 0.46 | 1.03 | 0.81      | 0.80 | 0.68 | 2.30 | 1.31   | 0.97    | 0.92 | 0.74 | 1.18   | 2.41    | 1.13 |
| 2003        | 1.53 | 1.87 | 1.14       | 1.06 | 0.85 | 0.89 | 0.77   | 0.76  | 0.71 | 0.61 | 0.70 | 0.55      | 0.61 | 0.88 | 0.81 | 0.55   | 0.63    | 0.57 | 0.46 | 0.47   | 0.41    | 0.45 |
| 2004        | 0.73 | 0.81 | 1.67       | 1.39 | 1.15 | 1.49 | 0.89   | 1.07  | 1.80 | 2.57 | 1.96 | 1.49      | 1.34 | 1.04 | 1.00 | 0.89   | 0.93    | 1.03 | 1.00 | 0.87   | 0.75    | 0.66 |
| 2005        | 0.51 | 0.41 | 0.54       | 0.99 | 0.83 | 0.65 | 0.72   | 0.96  | 0.98 | 0.82 | 0.66 | 1.11      | 0.90 | 0.70 | 0.61 | 0.58   | 0.63    | 0.73 | 0.59 | 0.64   | 0.47    | 0.49 |
| 2006        | 0.56 | 1.59 | 2.25       | 1.33 | 1.26 | 0.99 | 0.73   | 0.62  | 0.48 | 0.38 | 0.54 | 0.50      | 0.37 | 0.28 | 0.21 | 0.17   | 0.33    | 0.43 | 0.36 | 0.40   | 0.49    | 0.51 |
| 2007        | 1.10 | 0.84 | 0.67       | 0.84 | 0.85 | 0.93 | 0.80   | 1.33  | 0.72 | 0.87 | 0.93 | 0.87      | 1.14 | 1.43 | 1.53 | 1.16   | 1.09    | 0.98 | 0.94 | 0.95   | 0.65    | 0.76 |
| 2008        | 0.31 | 0.30 | 0.56       | 0.73 | 1.44 | 1.24 | 1.16   | 1.78  | 1.45 | 0.80 | 0.74 | 0.76      | 0.87 | 2.07 | 1.60 | 1.58   | 1.42    | 1.45 | 1.38 | 1.41   | 1.05    | 0.90 |
| 2009        | 0.68 | 0.79 | 0.75       | 0.83 | 0.68 | 0.70 | 1.69   | 1.92  | 2.15 | 1.92 | 1.45 | 1.43      | 1.33 | 0.92 | 0.99 | 0.76   | 0.87    | 0.80 | 0.84 | 0.70   | 0.74    | 0.62 |
| 2010        | 0.77 | 0.72 | 0.61       | 0.79 | 0.91 | 0.94 | 0.75   | 0.54  | 0.57 | 0.98 | 1.46 | 1.22      | 0.84 | 0.79 | 0.83 | 1.22   | 1.84    | 1.44 | 1.27 | 1.12   | 0.77    | 1.30 |
| 2011        | 0.76 | 0.51 | 1.92       | 1.64 | 0.92 | 0.93 | 0.69   | 0.47  | 0.45 | 0.36 | 0.40 | 0.32      | 0.29 | 0.38 | 0.77 | 0.49   | 0.59    | 0.60 | 0.49 | 0.85   | 1.05    | 2.51 |
| 2012        | 0.41 | 0.39 | 0.36       | 0.60 | 0.47 | 0.46 | 0.55   | 0.84  | 1.12 | 1.19 | 0.94 | 0.78      | 2.25 | 1.07 | 0.93 | 0.74   | 0.81    | 0.66 | 0.96 | 0.73   | 0.53    | 0.63 |
| 2013        | 0.81 | 1.28 | 1.18       | 1.52 | 1.99 | 2.22 | 1.57   | 1.39  | 0.91 | 1.25 | 1.20 | 1.41      | 1.75 | 3.31 | 2.29 | 1.99   | 3.57    | 2.41 | 2.44 | 2.12   | 2.04    | 2.05 |
| 2014        | 1.64 | 1.99 | 1.12       | 1.22 | 1.43 | 1.61 | 1.20   | 0.95  | 0.92 | 0.91 | 0.87 | 0.70      | 0.86 | 1.06 | 0.98 | 0.82   | 0.86    | 1.76 | 1.73 | 1.97   | 1.38    | 1.61 |
| 2015        | 3.13 | 1.76 | 1.20       | 1.32 | 1.45 | 1.37 | 0.86   | 1.30  | 1.47 | 1.19 | 0.87 | 0.76      | 0.65 | 0.54 | 0.62 | 0.86   | 1.01    | 0.66 | 0.65 | 0.52   | 0.67    | 0.81 |
| 2016        | 1.04 | 1.16 | 1.08       | 1.15 | 0.84 | 1.07 | 0.95   | 0.85  | 0.73 | 0.45 | 0.84 | 0.96      | 0.81 | 1.37 | 1.22 | 0.87   | 1.16    | 1.06 | 1.03 | 1.21   | 0.81    | 1.16 |
| 2017        | 0.59 | 1.77 | 1.07       | 0.97 | 1.29 | 1.02 | 0.65   | 0.53  | 0.40 | 0.43 | 0.60 | 0.61      | 0.56 | 0.62 | 0.71 | 0.39   | 0.36    | 0.69 | 0.85 | 0.69   | 0.67    | 0.77 |
| 2018        | 1.17 | 1.20 | 1.30       | 1.38 | 1.77 | 1.33 | 2.33   | 1.42  | 1.04 | 1.14 | 1.56 | 1.98      | 1.48 | 1.96 | 2.13 | 2.94   | 2.00    | 1.75 | 1.74 | 1.43   | 3.26    | 1.86 |
| 2019        | 0.53 | 0.48 | 0.52       | 0.58 | 0.44 | 0.52 | 0.59   | 0.58  | 0.59 | 0.47 | 0.49 | 0.53      | 0.99 | 0.86 | 0.72 | 0.56   | 0.70    | 0.63 | 0.61 | 0.68   | 0.57    | 0.92 |
| 2020        | 1.07 | 2.30 | 1.28       | 1.08 | 0.77 | 0.62 | 0.51   | 0.73  | 1.08 | 0.80 | 1.29 | 1.85      | 0.81 | 0.55 | 0.86 | 1.39   | 1.04    | 1.04 | 0.89 | 0.70   | 0.61    | 0.77 |

Figure 17 : Comparaison des coefficients d'hydraulicité hebdomadaires de la Garonne à Golfech entre 1993 et 2020 pendant la période de migration (semaine 9 à 30, mars – juillet)

Cette figure 17 montre l'alternance des coups d'eau en 2020 entre la fin d'avril et le début du mois de juillet qui ont pu perturber la migration des poissons migrateurs, notamment en mai-juin pour les saumons (arrêt de l'ascenseur) et juillet pour la passe à anguilles (étiage sévère, voir chapitre anguilles).

## 3.1.2 Le débit à Toulouse (Bazacle)

| QM_mensuels | Janvier | Février | Mars | Avril | Mai | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | MOYENNE |
|-------------|---------|---------|------|-------|-----|------|---------|------|-----------|---------|----------|----------|---------|
| 1993        | 128     | 95      | 117  | 253   | 260 | 150  | 85      | 55   | 174       | 210     | 184      | 218      | 161     |
| 1994        | 284     | 383     | 274  | 462   | 391 | 232  | 105     | 53   | 71        | 84      | 131      | 90       | 213     |
| 1995        | 312     | 244     | 291  | 192   | 263 | 199  | 105     | 57   | 97        | 84      | 75       | 210      | 177     |
| 1996        | 191     | 261     | 239  | 290   | 337 | 215  | 128     | 89   | 77        | 122     | 242      | 448      | 220     |
| 1997        | 250     | 171     | 132  | 116   | 144 | 118  | 94      | 104  | 67        | 59      | 77       | 148      | 123     |
| 1998        | 143     | 90      | 155  | 206   | 260 | 154  | 59      | 70   | 87        | 175     | 158      | 209      | 147     |
| 1999        | 202     | 208     | 191  | 235   | 394 | 179  | 91      | 73   | 66        | 67      | 101      | 182      | 166     |
| 2000        | 111     | 242     | 136  | 203   | 228 | 414  | 115     | 87   | 64        | 95      | 94       | 103      | 158     |
| 2001        | 207     | 230     | 250  | 274   | 291 | 158  | 121     | 56   | 51        | 50      | 65       | 53       | 150     |
| 2002        | 62      | 113     | 169  | 183   | 329 | 294  | 155     | 128  | 103       | 118     | 217      | 270      | 178     |
| 2003        | 247     | 340     | 322  | 258   | 279 | 182  | 65      | 40   | 84        | 79      | 83       | 159      | 178     |
| 2004        | 449     | 182     | 192  | 293   | 393 | 243  | 101     | 52   | 50        | 55      | 86       | 126      | 185     |
| 2005        | 169     | 159     | 229  | 320   | 364 | 178  | 72      | 66   | 83        | 81      | 95       | 104      | 160     |
| 2006        | 103     | 104     | 250  | 176   | 159 | 70   | 51      | 42   | 75        | 75      | 67       | 63       | 103     |
| 2007        | 41      | 70      | 153  | 333   | 356 | 224  | 70      | 64   | 45        | 67      | 52       | 98       | 131     |
| 2008        | 142     | 78      | 140  | 272   | 236 | 305  | 131     | 62   | 58        | 53      | 156      | 165      | 150     |
| 2009        | 220     | 240     | 184  | 349   | 495 | 209  | 85      | 63   | 49        | 54      | 132      | 105      | 182     |
| 2010        | 158     | 143     | 152  | 176   | 391 | 273  | 120     | 69   | 55        | 78      | 142      | 114      | 156     |
| 2011        | 81      | 120     | 209  | 206   | 133 | 167  | 130     | 81   | 60        | 50      | 162      | 111      | 126     |
| 2012        | 132     | 108     | 135  | 225   | 297 | 157  | 67      | 49   | 44        | 88      | 80       | 151      | 128     |
| 2013        | 306     | 380     | 293  | 373   | 438 | 573  | 234     | 87   | 68        | 62      | 389      | 190      | 283     |
| 2014        | 392     | 305     | 332  | 351   | 328 | 295  | 163     | 115  | 57        | 54      | 50       | 161      | 217     |
| 2015        | 124     | 329     | 384  | 331   | 270 | 190  | 77      | 78   | 68        | 65      | 133      | 92       | 178     |
| 2016        | 123     | 225     | 216  | 231   | 217 | 151  | 91      | 56   | 47        | 51      | 91       | 54       | 129     |
| 2017        | 88      | 151     | 181  | 151   | 164 | 132  | 65      | 52   | 55        | 54      | 82       | 140      | 110     |
| 2018        | 276     | 426     | 263  | 353   | 503 | 435  | 185     | 78   | 65        | 66      | 69       | 81       | 233     |
| 2019        | 107     | 222     | 107  | 133   | 215 | 154  | 67      | 62   | 53        | 79      | 170      | 344      | 143     |
| 2020        | 151     | 105     | 243  | 246   | 287 | 177  | 75      | 54   | 68        | 164     | 101      | 212      | 157     |
| MOYENNES    | 187     | 208     | 211  | 257   | 301 | 224  | 105     | 70   | 69        | 81      | 125      | 155      | 166     |

Figure 18: Comparaison des débits moyens mensuels au Bazacle en 2020 et des débits moyens mensuels enregistrés entre 1993 et 2019 (m³/s)

La situation des débits de la Garonne à Toulouse est la même qu'à Golfech avec des débits relativement soutenus pendant les mois de mars à juin.

| Coef hydrau | Janvier | Février | Mars | Avril | Mai  | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre |   | Coef an |
|-------------|---------|---------|------|-------|------|------|---------|------|-----------|---------|----------|----------|---|---------|
| 1993        | 0.68    | 0.46    | 0.56 | 0.98  | 0.86 | 0.67 | 0.81    | 0.79 | 2.52      | 2.61    | 1.47     | 1.41     |   | 0.97    |
| 1994        | 1.52    | 1.84    | 1.30 | 1.80  | 1.30 | 1.04 | 1.00    | 0.76 | 1.03      | 1.04    | 1.05     | 0.58     |   | 1.29    |
| 1995        | 1.67    | 1.17    | 1.38 | 0.75  | 0.87 | 0.89 | 1.00    | 0.82 | 1.40      | 1.04    | 0.60     | 1.35     |   | 1.07    |
| 1996        | 1.02    | 1.25    | 1.13 | 1.13  | 1.12 | 0.96 | 1.22    | 1.27 | 1.11      | 1.51    | 1.93     | 2.89     |   | 1.33    |
| 1997        | 1.34    | 0.82    | 0.63 | 0.45  | 0.48 | 0.52 | 0.90    | 1.49 | 0.97      | 0.73    | 0.61     | 0.95     |   | 0.74    |
| 1998        | 0.77    | 0.43    | 0.74 | 0.80  | 0.86 | 0.69 | 0.56    | 1.01 | 1.26      | 2.17    | 1.26     | 1.35     |   | 0.89    |
| 1999        | 1.08    | 1.00    | 0.90 | 0.91  | 1.31 | 0.80 | 0.87    | 1.05 | 0.95      | 0.83    | 0.80     | 1.17     |   | 1.00    |
| 2000        | 0.59    | 1.16    | 0.64 | 0.79  | 0.76 | 1.85 | 1.10    | 1.25 | 0.93      | 1.18    | 0.75     | 0.67     |   | 0.95    |
| 2001        | 1.11    | 1.10    | 1.19 | 1.06  | 0.97 | 0.71 | 1.15    | 0.80 | 0.74      | 0.62    | 0.52     | 0.34     |   | 0.91    |
| 2002        | 0.33    | 0.54    | 0.80 | 0.71  | 1.09 | 1.31 | 1.48    | 1.83 | 1.48      | 1.47    | 1.73     | 1.74     |   | 1.08    |
| 2003        | 1.32    | 1.63    | 1.53 | 1.00  | 0.93 | 0.81 | 0.62    | 0.58 | 1.22      | 0.99    | 0.66     | 1.03     |   | 1.07    |
| 2004        | 2.40    | 0.87    | 0.91 | 1.14  | 1.30 | 1.09 | 0.96    | 0.74 | 0.71      | 0.68    | 0.69     | 0.81     |   | 1.12    |
| 2005        | 0.91    | 0.76    | 1.08 | 1.24  | 1.21 | 0.79 | 0.68    | 0.94 | 1.19      | 1.01    | 0.76     | 0.67     |   | 0.96    |
| 2006        | 0.55    | 0.50    | 1.19 | 0.68  | 0.53 | 0.31 | 0.49    | 0.60 | 1.09      | 0.93    | 0.54     | 0.40     |   | 0.62    |
| 2007        | 0.22    | 0.34    | 0.73 | 1.29  | 1.18 | 1.00 | 0.67    | 0.92 | 0.65      | 0.84    | 0.41     | 0.63     |   | 0.79    |
| 2008        | 0.76    | 0.37    | 0.66 | 1.06  | 0.78 | 1.36 | 1.25    | 0.89 | 0.83      | 0.66    | 1.24     | 1.06     |   | 0.90    |
| 2009        | 1.18    | 1.15    | 0.87 | 1.36  | 1.64 | 0.93 | 0.81    | 0.90 | 0.71      | 0.67    | 1.06     | 0.67     |   | 1.10    |
| 2010        | 0.85    | 0.69    | 0.72 | 0.68  | 1.30 | 1.22 | 1.14    | 0.98 | 0.79      | 0.97    | 1.13     | 0.74     |   | 0.94    |
| 2011        | 0.43    | 0.58    | 0.99 | 0.80  | 0.44 | 0.74 | 1.23    | 1.15 | 0.86      | 0.62    | 1.29     | 0.72     |   | 0.76    |
| 2012        | 0.71    | 0.52    | 0.64 | 0.88  | 0.99 | 0.70 | 0.64    | 0.69 | 0.63      | 1.09    | 0.63     | 0.97     |   | 0.77    |
| 2013        | 1.64    | 1.83    | 1.39 | 1.45  | 1.45 | 2.56 | 2.23    | 1.24 | 0.98      | 0.78    | 3.11     | 1.23     |   | 1.71    |
| 2014        | 2.10    | 1.47    | 1.57 | 1.37  | 1.09 | 1.31 | 1.55    | 1.64 | 0.82      | 0.67    | 0.40     | 1.04     |   | 1.31    |
| 2015        | 0.66    | 1.58    | 1.82 | 1.29  | 0.90 | 0.85 | 0.73    | 1.11 | 0.97      | 0.81    | 1.06     | 0.59     |   | 1.08    |
| 2016        | 0.66    | 1.08    | 1.02 | 0.90  | 0.72 | 0.67 | 0.86    | 0.80 | 0.67      | 0.63    | 0.73     | 0.35     |   | 0.78    |
| 2017        | 0.47    | 0.73    | 0.86 | 0.59  | 0.55 | 0.59 | 0.62    | 0.75 | 0.79      | 0.68    | 0.66     | 0.90     |   | 0.66    |
| 2018        | 1.48    | 2.05    | 1.25 | 1.37  | 1.67 | 1.94 | 1.76    | 1.12 | 0.93      | 0.81    | 0.55     | 0.52     |   | 1.41    |
| 2019        | 0.57    | 1.07    | 0.51 | 0.52  | 0.72 | 0.69 | 0.63    | 0.89 | 0.76      | 0.98    | 1.36     | 2.22     |   | 0.86    |
| 2020        | 0.81    | 0.50    | 1.15 | 0.96  | 0.95 | 0.79 | 0.72    | 0.77 | 0.98      | 2.03    | 0.80     | 1.37     |   | 0.95    |
|             | 4.0     | _       |      |       |      | e    |         |      |           |         |          | _        | _ |         |

Figure 19 : Comparaison des coefficients d'hydraulicité de la Garonne au Bazacle entre 1993 et 2020.

|             |      | 26   | 5/02 - 1/ | 04   |      |      | 2/04 - | 29/04 |      |      | 30   | /04 - 03, | /06  |      |      | 04/06/ | - 01/07 |      |      | 02/07/ | - 29/07 |      |
|-------------|------|------|-----------|------|------|------|--------|-------|------|------|------|-----------|------|------|------|--------|---------|------|------|--------|---------|------|
| Coef_hydrau | 9    | 10   | 11        | 12   | 13   | 14   | 15     | 16    | 17   | 18   | 19   | 20        | 21   | 22   | 23   | 24     | 25      | 26   | 27   | 28     | 29      | 30   |
| 1993        | 0.51 | 0.53 | 0.50      | 0.64 | 0.56 | 0.89 | 0.97   | 1.25  | 0.90 | 0.94 | 0.73 | 0.87      | 0.95 | 0.81 | 0.69 | 0.54   | 0.73    | 0.78 | 1.00 | 0.89   | 0.72    | 0.65 |
| 1994        | 1.56 | 1.35 | 1.22      | 1.19 | 1.11 | 2.11 | 2.47   | 1.37  | 1.47 | 1.62 | 1.30 | 1.15      | 1.26 | 1.21 | 1.11 | 0.71   | 0.94    | 1.49 | 1.24 | 1.00   | 0.84    | 0.85 |
| 1995        | 1.63 | 2.03 | 1.33      | 1.12 | 0.90 | 0.82 | 0.79   | 0.67  | 0.72 | 0.68 | 0.80 | 0.98      | 0.95 | 1.04 | 0.88 | 0.75   | 0.93    | 1.01 | 1.16 | 1.14   | 0.86    | 0.86 |
| 1996        | 1.20 | 0.80 | 1.10      | 1.16 | 1.50 | 1.26 | 0.94   | 1.17  | 0.99 | 1.23 | 1.36 | 1.16      | 0.95 | 1.05 | 1.05 | 0.76   | 0.95    | 0.98 | 1.18 | 1.36   | 1.06    | 1.33 |
| 1997        | 0.67 | 0.62 | 0.63      | 0.68 | 0.55 | 0.51 | 0.45   | 0.40  | 0.39 | 0.58 | 0.46 | 0.50      | 0.42 | 0.50 | 0.54 | 0.42   | 0.52    | 0.76 | 0.97 | 1.00   | 0.79    | 0.86 |
| 1998        | 0.41 | 0.54 | 1.07      | 0.84 | 0.71 | 0.72 | 0.60   | 0.66  | 1.10 | 1.14 | 0.81 | 0.89      | 0.70 | 0.70 | 0.76 | 0.62   | 0.67    | 0.75 | 0.68 | 0.62   | 0.44    | 0.46 |
| 1999        | 0.99 | 0.94 | 0.93      | 0.87 | 0.80 | 0.83 | 0.79   | 0.95  | 1.06 | 1.21 | 1.24 | 1.51      | 1.36 | 1.08 | 0.91 | 0.69   | 0.69    | 0.78 | 0.77 | 0.84   | 0.85    | 0.90 |
| 2000        | 0.69 | 0.58 | 0.60      | 0.60 | 0.80 | 0.62 | 0.71   | 0.73  | 1.06 | 0.68 | 0.77 | 0.78      | 0.74 | 0.78 | 1.05 | 3.90   | 1.38    | 1.09 | 0.92 | 1.02   | 1.50    | 1.08 |
| 2001        | 0.75 | 1.12 | 1.48      | 1.11 | 1.20 | 1.20 | 1.53   | 0.84  | 0.82 | 0.97 | 1.00 | 1.10      | 0.86 | 0.80 | 0.71 | 0.71   | 0.66    | 0.70 | 1.22 | 1.05   | 1.45    | 1.07 |
| 2002        | 0.75 | 0.96 | 0.78      | 0.88 | 0.56 | 0.73 | 0.94   | 0.62  | 0.64 | 0.71 | 1.54 | 1.12      | 1.05 | 0.85 | 1.98 | 1.23   | 1.04    | 0.98 | 0.80 | 1.30   | 2.80    | 1.30 |
| 2003        | 1.91 | 1.95 | 1.36      | 1.14 | 1.05 | 1.10 | 1.02   | 1.01  | 0.88 | 0.94 | 0.87 | 0.77      | 1.00 | 1.15 | 0.91 | 0.73   | 0.73    | 0.75 | 0.62 | 0.67   | 0.60    | 0.61 |
| 2004        | 0.64 | 0.85 | 1.00      | 1.13 | 0.85 | 0.76 | 0.68   | 1.02  | 1.90 | 1.64 | 1.10 | 1.25      | 1.37 | 1.18 | 1.10 | 1.04   | 1.04    | 1.13 | 1.19 | 0.96   | 0.89    | 0.77 |
| 2005        | 0.61 | 0.55 | 0.97      | 1.81 | 1.36 | 1.00 | 1.14   | 1.39  | 1.39 | 1.26 | 0.90 | 1.51      | 1.24 | 1.01 | 0.83 | 0.72   | 0.78    | 0.88 | 0.77 | 0.81   | 0.56    | 0.56 |
| 2006        | 0.38 | 0.74 | 2.15      | 1.17 | 1.10 | 0.89 | 0.69   | 0.63  | 0.54 | 0.50 | 0.63 | 0.61      | 0.48 | 0.35 | 0.28 | 0.24   | 0.37    | 0.46 | 0.43 | 0.48   | 0.54    | 0.51 |
| 2007        | 0.55 | 0.67 | 0.54      | 0.79 | 1.03 | 1.17 | 1.06   | 2.01  | 1.08 | 1.20 | 1.23 | 1.01      | 1.12 | 1.37 | 1.26 | 0.85   | 0.82    | 0.75 | 0.70 | 0.77   | 0.56    | 0.69 |
| 2008        | 0.32 | 0.33 | 0.49      | 0.53 | 1.62 | 1.38 | 1.05   | 0.90  | 0.88 | 0.73 | 0.73 | 0.64      | 0.87 | 1.10 | 1.21 | 1.62   | 1.37    | 1.50 | 1.39 | 1.47   | 1.16    | 1.00 |
| 2009        | 0.74 | 0.85 | 0.97      | 0.99 | 0.72 | 0.69 | 1.51   | 1.49  | 1.72 | 1.69 | 1.60 | 1.67      | 1.77 | 1.20 | 1.08 | 0.81   | 0.94    | 0.79 | 0.90 | 0.83   | 0.77    | 0.74 |
| 2010        | 0.70 | 0.59 | 0.57      | 0.90 | 0.79 | 0.59 | 0.82   | 0.54  | 0.77 | 1.21 | 1.67 | 1.32      | 1.01 | 0.99 | 0.88 | 1.24   | 1.73    | 1.40 | 1.32 | 1.17   | 0.81    | 1.30 |
| 2011        | 1.02 | 0.65 | 1.28      | 1.16 | 0.91 | 1.15 | 0.91   | 0.60  | 0.60 | 0.50 | 0.53 | 0.39      | 0.37 | 0.52 | 1.00 | 0.60   | 0.73    | 0.65 | 0.56 | 0.99   | 0.88    | 2.91 |
| 2012        | 0.65 | 0.52 | 0.53      | 0.87 | 0.64 | 0.61 | 0.66   | 1.06  | 1.07 | 0.90 | 0.87 | 0.85      | 1.43 | 0.92 | 0.80 | 0.61   | 0.72    | 0.56 | 0.80 | 0.64   | 0.49    | 0.62 |
| 2013        | 0.96 | 1.44 | 1.27      | 1.28 | 1.87 | 1.67 | 1.39   | 1.67  | 1.09 | 1.35 | 1.36 | 1.25      | 1.49 | 2.65 | 2.04 | 2.09   | 3.63    | 2.42 | 2.47 | 2.34   | 2.15    | 2.06 |
| 2014        | 1.56 | 1.97 | 1.21      | 1.40 | 1.37 | 1.98 | 1.60   | 1.15  | 0.98 | 1.18 | 1.07 | 0.85      | 1.09 | 1.38 | 1.30 | 1.10   | 1.05    | 2.07 | 1.64 | 1.71   | 1.25    | 1.47 |
| 2015        | 4.38 | 1.92 | 1.33      | 1.35 | 1.67 | 1.30 | 1.00   | 1.40  | 1.35 | 1.27 | 0.91 | 0.85      | 0.70 | 0.64 | 0.77 | 0.92   | 1.07    | 0.75 | 0.72 | 0.67   | 0.69    | 0.75 |
| 2016        | 1.05 | 1.29 | 0.98      | 0.93 | 0.82 | 0.88 | 0.94   | 0.88  | 0.94 | 0.54 | 0.75 | 0.78      | 0.74 | 0.77 | 0.75 | 0.60   | 0.69    | 0.81 | 0.92 | 1.03   | 0.69    | 0.95 |
| 2017        | 0.49 | 1.03 | 0.87      | 0.78 | 0.86 | 0.79 | 0.65   | 0.56  | 0.44 | 0.42 | 0.56 | 0.55      | 0.55 | 0.66 | 0.84 | 0.49   | 0.43    | 0.59 | 0.75 | 0.63   | 0.52    | 0.65 |
| 2018        | 1.45 | 1.04 | 1.08      | 1.20 | 1.60 | 1.31 | 1.67   | 1.21  | 1.28 | 1.47 | 1.92 | 1.65      | 1.54 | 1.74 | 1.67 | 2.56   | 1.88    | 1.69 | 1.54 | 1.31   | 2.98    | 1.42 |
| 2019        | 0.61 | 0.52 | 0.53      | 0.51 | 0.38 | 0.44 | 0.45   | 0.68  | 0.52 | 0.43 | 0.49 | 0.52      | 1.23 | 0.99 | 0.76 | 0.58   | 0.69    | 0.66 | 0.57 | 0.63   | 0.55    | 0.84 |
| 2020        | 0.82 | 1.62 | 1.25      | 0.99 | 0.67 | 0.58 | 0.56   | 1.14  | 1.41 | 1.00 | 0.80 | 1.48      | 0.77 | 0.55 | 0.84 | 0.85   | 0.81    | 0.82 | 0.76 | 0.69   | 0.60    | 0.79 |

Figure 20 : Comparaison des coefficients d'hydraulicité hebdomadaires de la Garonne au Bazacle entre 1993 et 2020, pendant la période de migration (semaine 9 à 30, mars – juillet)

Les figures 19 et 20 montrent les coefficients d'hydraulicité mensuels et hebdomadaires calculés au Bazacle en 2020. Ils reflètent parfaitement la particularité de l'année avec une alternance de périodes avec des débits très faibles (semaine 13 à 15) et des périodes de crues (semaine 16, 17, 20) avec des valeurs de débits correspondant environ à 2 fois le module.

### 3.1.3 Le débit à Carbonne

| QM_mensuels | Janvier | Février | Mars | Avril | Mai | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | MOYENNE |
|-------------|---------|---------|------|-------|-----|------|---------|------|-----------|---------|----------|----------|---------|
| 2000        | 49      | 120     | 68   | 103   | 147 | 222  | 62      | 44   | 30        | 57      | 54       | 54       | 84      |
| 2001        | 100     | 124     | 149  | 158   | 198 | 100  | 85      | 37   | 31        | 24      | 40       | 28       | 90      |
| 2002        | 32      | 64      | 100  | 107   | 209 | 170  | 76      | 56   | 49        | 65      | 133      | 158      | 101     |
| 2003        | 132     | 150     | 177  | 152   | 172 | 114  | 35      | 19   | 56        | 47      | 59       | 94       | 100     |
| 2004        | 237     | 101     | 125  | 169   | 226 | 160  | 62      | 32   | 27        | 34      | 51       | 61       | 107     |
| 2005        | 88      | 70      | 130  | 173   | 250 | 113  | 40      | 37   | 44        | 41      | 47       | 52       | 90      |
| 2006        | 52      | 43      | 124  | 98    | 100 | 38   | 24      | 20   | 51        | 59      | 48       | 40       | 58      |
| 2007        | 24      | 37      | 96   | 210   | 208 | 123  | 39      | 37   | 26        | 40      | 29       | 53       | 77      |
| 2008        | 90      | 39      | 103  | 172   | 166 | 215  | 96      | 36   | 31        | 27      | 116      | 106      | 100     |
| 2009        | 138     | 148     | 136  | 244   | 349 | 147  | 54      | 30   | 29        | 38      | 105      | 82       | 125     |
| 2010        | 109     | 86      | 91   | 114   | 265 | 186  | 78      | 38   | 28        | 44      | 99       | 70       | 101     |
| 2011        | 48      | 73      | 137  | 127   | 96  | 110  | 92      | 48   | 32        | 28      | 127      | 76       | 83      |
| 2012        | 85      | 62      | 96   | 136   | 187 | 103  | 44      | 24   | 23        | 65      | 55       | 103      | 82      |
| 2013        | 201     | 251     | 198  | 233   | 289 | 413  | 157     | 57   | 45        | 44      | 274      | 122      | 190     |
| 2014        | 239     | 170     | 209  | 226   | 197 | 200  | 110     | 79   | 37        | 34      | 34       | 108      | 137     |
| 2015        | 83      | 213     | 240  | 198   | 165 | 110  | 48      | 51   | 45        | 41      | 100      | 53       | 112     |
| 2016        | 76      | 145     | 136  | 139   | 141 | 101  | 61      | 29   | 27        | 29      | 62       | 29       | 81      |
| 2017        | 50      | 102     | 105  | 87    | 106 | 92   | 40      | 28   | 33        | 33      | 53       | 89       | 68      |
| 2018        | 162     | 266     | 142  | 209   | 340 | 311  | 111     | 46   | 35        | 36      | 38       | 45       | 145     |
| 2019        | 63      | 138     | 73   | 90    | 151 | 105  | 42      | 37   | 29        | 49      | 113      | 223      | 93      |
| 2020        | 75      | 62      | 148  | 171   | 206 | 121  | 51      | 31   | 44        | 114     | 69       | 150      | 104     |
| MOYENNES    | 103     | 120     | 132  | 157   | 198 | 157  | 68      | 39   | 35        | 42      | 82       | 82       | 101     |

Figure 21 : Comparaison des débits moyens mensuels à Carbonne en 2020 et des débits moyens mensuels enregistrés entre 2000 et 2019 (m³/s).

Sans surprise, la même situation est retrouvée sur la Garonne au niveau de Carbonne avec une nouvelle fois des débits soutenus entre mars et mai, pendant la période de migration et un étiage relativement sévère en juillet aout.

| Coef_hydrau | Janvier | Février | Mars | Avril | Mai  | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | Coef_an |
|-------------|---------|---------|------|-------|------|------|---------|------|-----------|---------|----------|----------|---------|
| 2000        | 0.48    | 1.00    | 0.52 | 0.65  | 0.74 | 1.42 | 0.91    | 1.12 | 0.86      | 1.36    | 0.66     | 0.65     | 0.83    |
| 2001        | 0.98    | 1.03    | 1.13 | 1.01  | 1.00 | 0.64 | 1.25    | 0.95 | 0.87      | 0.58    | 0.49     | 0.34     | 0.88    |
| 2002        | 0.31    | 0.53    | 0.76 | 0.68  | 1.05 | 1.09 | 1.12    | 1.42 | 1.38      | 1.56    | 1.63     | 1.92     | 1.00    |
| 2003        | 1.29    | 1.25    | 1.35 | 0.96  | 0.87 | 0.72 | 0.51    | 0.48 | 1.58      | 1.12    | 0.72     | 1.14     | 0.99    |
| 2004        | 2.30    | 0.84    | 0.95 | 1.07  | 1.14 | 1.02 | 0.92    | 0.83 | 0.77      | 0.82    | 0.63     | 0.74     | 1.06    |
| 2005        | 0.85    | 0.58    | 0.99 | 1.10  | 1.26 | 0.72 | 0.60    | 0.94 | 1.23      | 0.98    | 0.58     | 0.63     | 0.89    |
| 2006        | 0.51    | 0.36    | 0.94 | 0.62  | 0.50 | 0.25 | 0.35    | 0.51 | 1.45      | 1.42    | 0.58     | 0.49     | 0.57    |
| 2007        | 0.23    | 0.31    | 0.73 | 1.34  | 1.05 | 0.79 | 0.58    | 0.93 | 0.72      | 0.97    | 0.35     | 0.65     | 0.76    |
| 2008        | 0.87    | 0.33    | 0.78 | 1.09  | 0.84 | 1.37 | 1.41    | 0.91 | 0.87      | 0.65    | 1.42     | 1.29     | 0.98    |
| 2009        | 1.35    | 1.23    | 1.04 | 1.55  | 1.76 | 0.94 | 0.80    | 0.77 | 0.82      | 0.90    | 1.28     | 0.99     | 1.23    |
| 2010        | 1.06    | 0.72    | 0.69 | 0.72  | 1.34 | 1.19 | 1.15    | 0.98 | 0.78      | 1.05    | 1.21     | 0.84     | 0.99    |
| 2011        | 0.47    | 0.61    | 1.04 | 0.81  | 0.49 | 0.70 | 1.36    | 1.22 | 0.91      | 0.66    | 1.56     | 0.92     | 0.82    |
| 2012        | 0.83    | 0.51    | 0.73 | 0.87  | 0.94 | 0.66 | 0.65    | 0.62 | 0.66      | 1.55    | 0.67     | 1.25     | 0.81    |
| 2013        | 1.96    | 2.09    | 1.50 | 1.48  | 1.46 | 2.64 | 2.31    | 1.45 | 1.29      | 1.06    | 3.35     | 1.48     | 1.88    |
| 2014        | 2.32    | 1.41    | 1.59 | 1.43  | 1.00 | 1.28 | 1.62    | 2.01 | 1.05      | 0.82    | 0.41     | 1.31     | 1.35    |
| 2015        | 0.80    | 1.77    | 1.82 | 1.26  | 0.83 | 0.70 | 0.71    | 1.29 | 1.26      | 0.99    | 1.22     | 0.65     | 1.11    |
| 2016        | 0.74    | 1.21    | 1.03 | 0.88  | 0.71 | 0.65 | 0.90    | 0.73 | 0.78      | 0.70    | 0.75     | 0.36     | 0.80    |
| 2017        | 0.49    | 0.85    | 0.80 | 0.55  | 0.53 | 0.59 | 0.59    | 0.71 | 0.92      | 0.79    | 0.64     | 1.08     | 0.67    |
| 2018        | 1.58    | 2.21    | 1.08 | 1.33  | 1.72 | 1.98 | 1.64    | 1.18 | 0.99      | 0.85    | 0.46     | 0.55     | 1.43    |
| 2019        | 0.61    | 1.15    | 0.55 | 0.57  | 0.76 | 0.67 | 0.62    | 0.94 | 0.81      | 1.18    | 1.37     | 2.70     | 0.91    |
| 2020        | 0.73    | 0.51    | 1.13 | 1.09  | 1.04 | 0.77 | 0.75    | 0.78 | 1.26      | 2.74    | 0.84     | 1.82     | 1.02    |

Figure 22 : Comparaison des coefficients d'hydraulicité de la Garonne à Carbonne entre 1993 et 2020

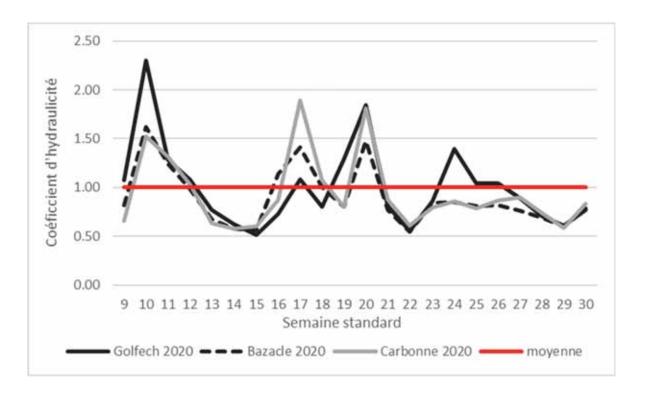



Figure 23 Evolution du coefficient d'hydraulicité moyen hebdomadaire de la Garonne en 2020 au niveau de Golfech, du Bazacle et de Carbonne

La Figure 23 résume la situation hydrologique de la Garonne en 2020 au niveau des trois stations de contrôle et montre particulièrement bien l'alternance de coups d'eau sur la

Garonne pendant les mois de mars à juillet, période de forte migration.

## 3.2 La température de l'eau de la Garonne au niveau des stations de contrôle.

### 3.2.1 La température de l'eau à Golfech

| TM_mensuelles         | Janvier | Février | Mars | Avril | Mai  | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | MOYENNE |
|-----------------------|---------|---------|------|-------|------|------|---------|------|-----------|---------|----------|----------|---------|
| 1993                  | 6.5     | 7.5     | 9.7  | 13.0  | 15.6 | 20.7 | 22.8    | 24.6 | 19.6      | 13.5    | 9.6      | 8.5      | 14.3    |
| 1994                  | 7.6     | 7.7     | 11.7 | 11.0  | 16.0 | 19.5 | 25.0    | 25.6 | 20.0      | 15.1    | 11.8     | 9.1      | 15.0    |
| 1995                  | 6.5     | 9.3     | 9.7  | 13.2  | 16.3 | 19.3 | 25.3    | 25.6 | 19.4      | 17.4    | 11.5     | 8.3      | 15.2    |
| 1996                  | 9.3     | 7.2     | 9.7  | 13.2  | 15.8 | 20.8 | 23.3    | 23.6 | 19.3      | 14.7    | 10.7     | 9.0      | 14.7    |
| 1997                  | 6.8     | 8.9     | 12.7 | 16.1  | 18.7 | 22.0 | 22.3    | 25.5 | 21.9      | 18.3    | 11.3     | 8.2      | 16.1    |
| 1998                  | 7.8     | 8.3     | 11.3 | 13.0  | 16.6 | 20.5 | 24.4    | 24.4 | 20.7      | 15.0    | 9.7      | 6.4      | 14.8    |
| 1999                  | 7.3     | 6.6     | 10.4 | 13.3  | 15.9 | 20.3 | 24.9    | 25.1 | 22.8      | 16.4    | 10.2     | 7.0      | 15.0    |
| 2000                  | 5.8     | 8.3     | 11.0 | 12.9  | 17.4 | 19.7 | 23.0    | 24.6 | 21.8      | 15.4    | 11.0     | 9.5      | 15.0    |
| 2001                  | 7.9     | 8.3     | 11.4 | 12.7  | 15.6 | 21.5 | 22.9    | 25.2 | 20.3      | 18.0    | 10.4     | 5.4      | 15.0    |
| 2002                  | 5.5     | 8.4     | 11.7 | 13.8  | 15.2 | 19.2 | 21.6    | 22.1 | 20.0      | 15.4    | 11.1     | 8.2      | 14.4    |
| 2003                  | 5.5     | 5.9     | 6.3  | 12.9  | 15.0 | 22.2 | 25.5    | 28.1 | 21.1      | 15.7    | 10.9     | 7.8      | 14.7    |
| 2004                  | 7.0     | 7.0     | 8.6  | 11.7  | 14.6 | 19.9 | 23.4    | 25.1 | 22.4      | 18.0    | 10.1     | 7.4      | 14.6    |
| 2005                  | 6.1     | 5.3     | 8.5  | 12.6  | 15.9 | 21.6 | 24.8    | 23.7 | 21.0      | 17.0    | 11.3     | 5.0      | 14.4    |
| 2006                  | 5.7     | 6.3     | 9.6  | 14.6  | 18.1 | 23.5 | 27.6    | 23.7 | 21.8      | 17.1    | 13.3     | 7.5      | 15.7    |
| 2007                  | 6.9     | 7.9     | 10.5 | 14.1  | 16.2 | 19.8 | 23.0    | 23.7 | 21.3      | 16.3    | 9.8      | 7.1      | 14.7    |
| 2008                  | 7.1     | 7.7     | 9.8  | 12.0  | 16.3 | 17.8 | 22.5    | 24.0 | 20.9      | 16.1    | 10.1     | 6.5      | 14.2    |
| 2009                  | 4.8     | 6.3     | 9.8  | 11.7  | 14.8 | 20.0 | 24.7    | 26.0 | 21.8      | 17.2    | 11.7     | 7.0      | 14.7    |
| 2010                  | 5.2     | 5.5     | 9.2  | 14.2  | 14.8 | 18.4 | 24.3    | 23.6 | 21.3      | 15.2    | 10.3     | 5.3      | 13.9    |
| 2011                  | 5.7     | 6.9     | 10.0 | 15.4  | 20.0 | 20.1 | 22.3    | 24.3 | 22.9      | 17.7    | 12.2     | 8.7      | 15.5    |
| 2012                  | 7.3     | 3.3     | 10.6 | 12.8  | 15.7 | 21.0 | 24.4    | 26.5 | 22.2      | 17.1    | 10.7     | 7.4      | 14.9    |
| 2013                  | 6.2     | 6.6     | 9.2  | 12.0  | 13.3 | 15.3 | 22.1    | 24.5 | 21.0      | 20.0    | 10.8     | 5.9      | 13.9    |
| 2014                  | 6.9     | 8.1     | 10.0 | 13.3  | 15.1 | 19.1 | 21.5    | 22.1 | 22.5      | 18.3    | 13.4     | 8.0      | 14.9    |
| 2015                  | 5.9     | 6.1     | 9.6  | 13.7  | 16.0 | 21.2 | 26.6    | 24.5 | 21.2      | 15.9    | 12.3     | 8.1      | 15.1    |
| 2016                  | 8.4     | 8.8     | 9.4  | 13.3  | 15.8 | 19.4 | 24.3    | 25.6 | 23.6      | 17.1    | 11.8     | 7.3      | 15.4    |
| 2017                  | 4.6     | 8.2     | 11.0 | 14.8  | 17.9 | 23.8 | 24.4    | 25.7 | 20.7      | 17.9    | 10.0     | 6.2      | 15.4    |
| 2018                  | 8.9     | 6.8     | 9.0  | 12.9  | 14.5 | 18.2 | 23.9    | 26.1 | 23.3      | 17.2    | 11.4     | 8.9      | 15.1    |
| 2019                  | 5.7     | 7.9     | 11.4 | 13.8  | 16.1 | 20.4 | 27.0    | 24.8 | 22.3      | 18.0    | 10.8     | 8.9      | 15.6    |
| 2020                  | 7.5     | 9.7     | 11.1 | 14.5  | 18.0 | 20.2 | 25.3    | 26.8 | 22.7      | 14.4    | 12.7     | 9.7      | 16.1    |
| MOYENNES<br>1993-2019 | 6.6     | 7.2     | 10.1 | 13.3  | 16.0 | 20.2 | 24.0    | 24.8 | 21.4      | 16.7    | 11.1     | 7.5      | 14.9    |

Figure 24 : Comparaison des températures moyennes mensuelles à Golfech en 2020 et des températures moyennes mensuelles enregistrées entre 1993 et 2019

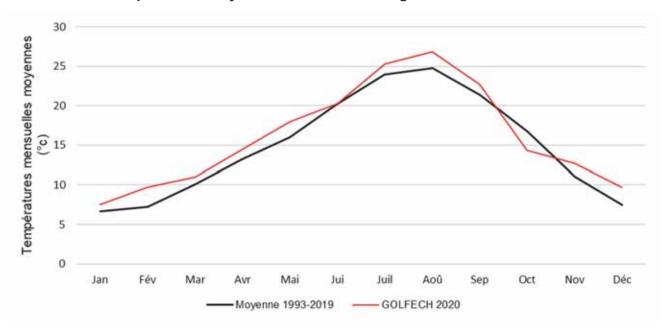



Figure 25 : Comparaison des températures moyennes mensuelles à Golfech en 2020 et de la température moyenne mensuelle enregistrée sur la période 1993 et 2019

Indépendamment des coups d'eau qui auraient pu favoriser une baisse ou au moins jouer un rôle tampon dans l'augmentation de la température de l'eau, les valeurs enregistrées à Golfech pendant la période de migration (février à juillet) sont toujours supérieures à la moyenne enregistrée sur la période 1993 à 2019 pendant la période de migration (mars juillet). Les très faibles débits de la Garonne entre les différentes crues, couplés à de fortes périodes d'ensoleillement ont favorisé l'augmentation rapide de la température de l'eau. Les valeurs enregistrées au mois d'août ont été particulièrement élevées avec des moyennes journalières supérieures ou égales à 26 °C pendant 40 jours consécutifs entre le 20 juillet et le 27 aout. Le pic de température a été atteint le 12 aout (29.2°C) avec un pic horaire de 30 °C à 19h.

## 3.2.2 La température de l'eau au Bazacle

| TM_mensuelles          | Janvier | Février | Mars | Avril | Mai  | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | MOYENNE |
|------------------------|---------|---------|------|-------|------|------|---------|------|-----------|---------|----------|----------|---------|
| 1993                   | -       | -       | -    | -     | -    | -    | -       | -    | -         | -       | -        | -        | -       |
| 1994                   | 6.6     | 7.4     | 10.5 | 9.7   | 13.2 | 16.6 | 22.8    | 24.7 | 19.0      | 15.5    | 11.4     | 8.8      | 13.9    |
| 1995                   | 6.4     | 8.6     | 8.8  | 11.7  | 13.9 | 16.1 | 22.5    | 23.3 | 17.1      | 16.0    | 10.6     | 7.2      | 13.5    |
| 1996                   | 7.6     | 6.6     | 8.8  | 11.0  | 13.2 | 17.0 | 20.3    | 21.5 | 17.6      | 13.4    | 9.8      | 7.8      | 12.9    |
| 1997                   | 6.1     | 8.5     | 11.8 | 14.5  | 16.1 | 18.6 | 20.4    | 23.1 | 20.4      | 16.8    | 10.5     | 7.4      | 14.5    |
| 1998                   | 7.0     | 8.4     | 10.3 | 11.5  | 13.9 | 17.5 | 23.0    | 22.8 | 19.0      | 13.0    | 8.7      | 6.1      | 13.4    |
| 1999                   | 6.5     | 6.3     | 9.6  | 11.6  | 13.4 | 17.0 | 22.5    | 23.2 | 20.8      | 15.5    | 9.2      | 6.4      | 13.5    |
| 2000                   | 5.6     | 8.4     | 10.5 | 11.9  | 14.8 | 16.6 | 20.7    | 22.4 | 19.9      | 14.1    | 10.1     | 8.8      | 13.7    |
| 2001                   | 7.1     | 7.5     | 10.3 | 11.3  | 13.2 | 18.6 | 20.2    | 23.3 | 19.0      | 16.5    | 8.8      | 4.4      | 13.3    |
| 2002                   | 5.4     | 7.8     | 10.0 | 11.6  | 12.3 | 16.4 | 18.6    | 18.9 | 17.0      | 13.4    | 9.5      | 7.5      | 12.4    |
| 2003                   | 5.8     | 6.0     | 9.3  | 11.2  | 12.8 | 18.6 | 23.2    | 25.1 | 18.8      | 13.5    | 9.7      | 6.7      | 13.4    |
| 2004                   | 7.1     | 7.2     | 7.8  | 10.3  | 12.0 | 17.0 | 20.6    | 22.4 | 19.7      | 16.1    | 8.5      | 6.5      | 12.9    |
| 2005                   | 5.2     | 4.6     | 7.2  | 10.1  | 12.5 | 17.2 | 21.4    | 20.5 | 18.0      | 14.5    | 9.0      | 4.2      | 12.0    |
| 2006                   | 5.0     | 5.6     | 8.5  | 12.1  | 14.9 | 20.4 | 24.6    | 21.5 | 18.9      | 15.1    | 11.0     | 5.9      | 13.6    |
| 2007                   | 6.2     | 6.7     | 8.5  | 10.8  | 12.5 | 15.9 | 19.5    | 19.7 | 17.6      | 13.1    | 7.4      | 5.0      | 11.9    |
| 2008                   | 5.7     | 6.8     | 8.6  | 9.8   | 12.4 | 13.8 | 17.5    | 19.7 | 17.0      | 13.2    | 7.7      | 5.2      | 11.4    |
| 2009                   | 7.6     | 7.5     | 9.2  | 10.1  | 11.4 | 14.7 | 18.4    | 21.8 | 20.3      | 11.2    | 10.7     | 6.7      | 12.5    |
| 2010                   | 8.0     | -       | -    | -     | -    | -    | -       | -    | -         | -       | -        | -        | 8.0     |
| 2011                   | -       | -       | -    | -     | -    | -    | -       | -    | -         | 10.6    | 7.7      | -        | 9.1     |
| 2012                   | 6.7     | 3.9     | 10.1 | 11.1  | 13.5 | 18.2 | 21.5    | 23.9 | 19.9      | 15.3    | 9.9      | 7.2      | 13.4    |
| 2013                   | 6.5     | 6.8     | 8.9  | 10.4  | 11.1 | 13.0 | 18.6    | 21.5 | 20.8      | -       | -        | 7.5      | 12.5    |
| 2014                   | 7.7     | 8.2     | 10.0 | 12.9  | 14.1 | 17.7 | 20.3    | 20.9 | 22.2      | 18.7    | 13.5     | 9.0      | 14.6    |
| 2015                   | 6.1     | 6.2     | 9.1  | 11.7  | 13.5 | 18.0 | 23.4    | 21.4 | 18.9      | 14.4    | 11.5     | 7.6      | 13.5    |
| 2016                   | 7.7     | 8.4     | 9.4  | 11.7  | 13.9 | 17.6 | 21.7    | 22.9 | 21.0      | 15.8    | 10.6     | 6.7      | 14.0    |
| 2017                   | 4.5     | 8.2     | 10.6 | 14.6  | 17.5 | 22.3 | 23.8    | 24.7 | 20.4      | 17.9    | 9.7      | 6.4      | 15.1    |
| 2018                   | 8.3     | 7.0     | 9.9  | 13.1  | 13.5 | 16.6 | 21.7    | 24.0 | 22.0      | 16.2    | 10.4     | 9.0      | 14.3    |
| 2019                   | 5.7     | 7.9     | 10.7 | 12.4  | 13.9 | 17.6 | 24.4    | 23.1 | 20.4      | 16.1    | 9.6      | 8.8      | 14.2    |
| 2020                   | 7.1     | 9.4     | 10.4 | 13.1  | 15.6 | 17.5 | 22.8    | 23.8 | 20.0      | 12.2    | 10.4     | 7.7      | 14.2    |
| MOYENNE 1994 -<br>2019 | 6.5     | 7.1     | 9.5  | 11.6  | 13.5 | 17.2 | 21.3    | 22.3 | 19.4      | 14.8    | 9.8      | 6.9      | 13.0    |

Figure 26 : Comparaison des températures moyennes mensuelles au Bazacle en 2020 et des températures moyennes mensuelles enregistrées entre 1993 et 2019

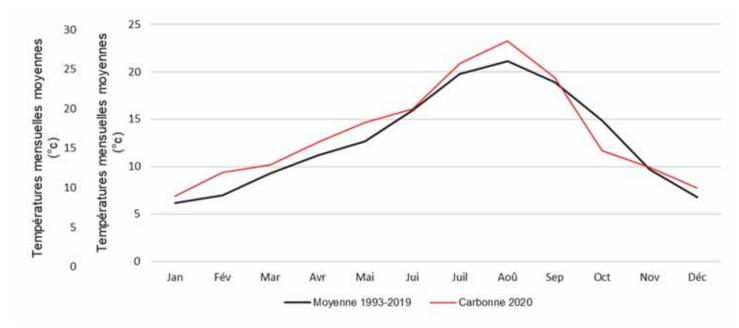



Figure 27 : Comparaison des températures moyennes mensuelles au Bazacle en 2020 et de la température moyenne mensuelle enregistrées sur la période 1993 et 2019

La température de l'eau au Bazacle varie de la même manière qu'à Golfech en 2020 avec toutefois des valeurs journalières moins importantes. La valeur maximum est atteinte le 1er aout avec 26.3°C (Figures 26 et 27).

### 3.2.3 La température de l'eau à Carbonne

| TM_mensuelles | Janvier | Février | Mars | Avril | Mai  | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | MOYENNE |
|---------------|---------|---------|------|-------|------|------|---------|------|-----------|---------|----------|----------|---------|
| 2000          | 5.4     | 8.3     | 10.5 | 11.5  | 13.8 | 15.7 | 19.6    | 21.1 | 20.0      | 13.9    | 10.0     | 8.2      | 13.2    |
| 2001          | 7.2     | 7.9     | 10.5 | 11.3  | 12.7 | 17.1 | 18.3    | 22.1 | 19.2      | 16.2    | 9.2      | 4.9      | 13.1    |
| 2002          | 5.9     | 8.0     | 10.3 | 11.6  | 12.2 | 15.7 | 17.9    | 18.2 | 16.7      | 13.5    | 9.7      | 7.4      | 12.3    |
| 2003          | 5.7     | 6.0     | 9.1  | 10.6  | 11.8 | 16.8 | 21.4    | 23.5 | 18.0      | 13.0    | 9.1      | 6.6      | 12.6    |
| 2004          | 6.6     | 6.7     | 7.8  | 9.5   | 11.7 | 14.8 | 18.7    | 21.7 | 20.1      | 15.9    | 8.6      | 6.7      | 12.4    |
| 2005          | 6.2     | 6.2     | 8.4  | 10.2  | 12.9 | 16.7 | 20.8    | 19.7 | 18.1      | 15.6    | 8.5      | 6.6      | 12.5    |
| 2006          | 5.8     | 6.5     | 8.9  | 12.0  | 14.5 | 19.9 | 24.0    | 21.9 | 18.3      | 14.3    | 10.8     | 6.0      | 13.6    |
| 2007          | 5.8     | 6.5     | 8.9  | 10.8  | 12.4 | 15.6 | 19.6    | 20.2 | 18.7      | 13.7    | 8.8      | 5.6      | 12.2    |
| 2008          | 6.6     | 7.5     | 9.5  | 10.5  | 12.6 | 14.0 | 17.6    | 20.8 | 18.3      | 14.3    | 8.3      | 6.2      | 12.2    |
| 2009          | 5.3     | 6.8     | 8.8  | 10.1  | 11.6 | 15.7 | 20.4    | 22.2 | 19.2      | 15.3    | 10.2     | 6.6      | 12.7    |
| 2010          | 6.2     | 6.1     | 8.3  | 12.3  | 11.8 | 14.4 | 19.0    | 20.8 | 19.0      | 13.4    | 9.1      | 5.1      | 12.1    |
| 2011          | 5.6     | 7.0     | 9.4  | 12.5  | 15.4 | 15.8 | 17.9    | 20.7 | 19.8      | 15.6    | 10.6     | 7.6      | 13.2    |
| 2012          | 6.9     | 5.4     | 9.8  | 10.6  | 12.9 | 16.5 | 19.9    | 23.1 | 19.9      | 15.0    | 9.5      | 6.4      | 13.0    |
| 2013          | 5.4     | 5.7     | 9.1  | 10.8  | 11.0 | 12.9 | 17.9    | 20.5 | 18.3      | 16.3    | 11.3     | 6.5      | 12.1    |
| 2014          | 7.3     | 7.7     | 9.0  | 11.1  | 11.9 | 14.7 | 17.0    | 18.1 | 17.5      | 14.0    | 10.0     | 7.4      | 12.1    |
| 2015          | 5.8     | 6.3     | 8.9  | 11.2  | 12.6 | 16.6 | 22.3    | 19.8 | 18.1      | 14.2    | 11.5     | 7.2      | 12.9    |
| 2016          | 7.8     | 8.3     | 9.2  | 11.2  | 12.9 | 16.0 | 19.9    | 22.5 | 20.8      | 15.9    | 10.3     | 6.2      | 13.4    |
| 2017          | 4.8     | 7.9     | 10.1 | 12.8  | 14.4 | 18.8 | 20.9    | 22.4 | 18.5      | 15.7    | 9.0      | 6.4      | 13.5    |
| 2018          | 7.8     | 6.8     | 8.4  | 10.9  | 11.4 | 14.0 | 18.9    | 21.5 | 20.3      | 15.6    | 9.9      | 8.9      | 12.9    |
| 2019          | 5.9     | 7.9     | 10.5 | 11.8  | 12.9 | 16.4 | 22.8    | 21.7 | 19.3      | 15.2    | 9.4      | 8.6      | 13.5    |
| 2020          | 6.9     | 9.4     | 10.2 | 12.6  | 14.7 | 16.1 | 20.9    | 23.3 | 19.4      | 11.7    | 9.9      | 7.7      | 13.6    |
| MOYENNES      | 6.2     | 7.0     | 9.3  | 11.2  | 12.7 | 15.9 | 19.7    | 21.1 | 18.9      | 14.8    | 9.7      | 6.8      | 12.8    |

Figure 28 : Comparaison des températures moyennes mensuelles à Carbonne en 2020 et des températures moyennes mensuelles enregistrées entre 2000 et 2019

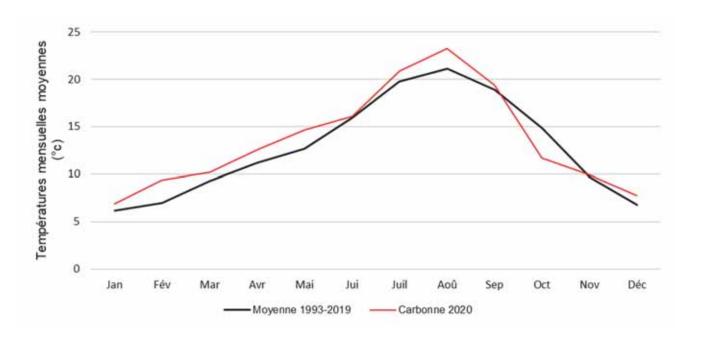



Figure 29 : Comparaison des températures moyennes mensuelles à Carbonne en 2020 et de la température moyenne mensuelle enregistrées sur la période 2000 et 2019

La situation est identique à Carbonne, avec des températures plus fraiches pendant la période estivale même si en pic journalier, certaines valeurs observées étaient proches de 25°C le 10 aout (figures 28 et 29).

La variation de la température de l'eau sur les 3 stations de la Garonne montre la très faible influence de la température de l'eau des affluents en 2020, comme l'Ariège ou le bassin du Tarn.

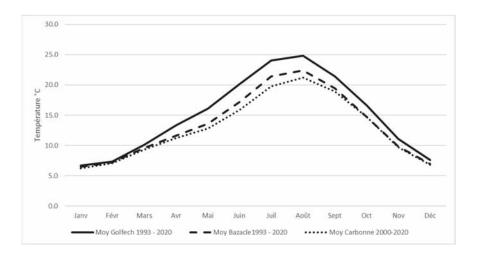



Figure 30 : Comparaison des températures moyennes mensuelles au niveau de Golfech, du Bazacle (période 1993 – 2020) et de Carbonne (2000 – 2020).

La figure 30 montre que les températures hivernales sont quasiment identiques au niveau des 3 stations de contrôles mais que les écarts se creusent à partir de mars avec environ 2°C de plus en moyenne mensuelle au niveau de Golfech par rapport au Bazacle, la différence étant moindre entre cette dernière station et Carbonne (environ 1°C). Ainsi, pour la migration des espèces, notamment les grands salmonidés, il est fondamental de migrer rapidement en amont du Bazacle pour éviter des températures estivales trop importantes, voire létales, et ainsi attendre dans de bonnes conditions la période de reproduction (octobre décembre).

# 4 BILAN DES PASSAGES DE POISSONS

# 4.1 Bilan général

D'une manière générale, les passages de l'année 2020 à Golfech sont marqués par 1) des effectifs très faibles de grandes aloses (364) au regard des stocks historiques, 2) une quasi absence récurrente et alarmante de lamproies (4), 3) un nombre de saumons, 168 individus contrôlés, supérieur aux effectifs contrôlés ces quinze dernières années (moyenne 122 individus période 2003 - 2019). En ce qui concerne l'anguille, 53257 individus ont franchi l'obstacle, un des effectifs les plus faibles depuis la mise en service de la passe expérimentale en 2002. Enfin, à noter la présence de 5 truites de mer, ce qui est non négligeable par rapport aux observations de ces dernières années (moyenne de 2 depuis 2013), mais toutefois assez anecdotique sur ce site.

Du fait 1) de la stratégie de piégeage à Golfech et du transport sur l'Ariège d'un maximum de saumons décidé par le Groupe Migrateurs Garonne du COGEPOMI et 2) des effectifs très faibles d'aloses et de lamproies marines observés à Golfech, les effectifs de grands migrateurs sur les stations du Bazacle et de Carbonne sont bien évidemment très faibles. Cependant, du fait de la crise sanitaire liée au COVID 19, seulement 16 saumons ont été transportés sur l'Ariège à partir du 11 mai. Ainsi, 60 saumons ont été observés au Bazacle en 2020 et 1 alose a été observée sur ce site. A Carbonne, 12 saumons ont été capturés, et transportés sur l'Ariège tel que préconisé par le Groupe Migrateurs Garonne.

# 4.2 Activité migratrice des espèces amphibiotiques au niveau de Golfech, du Bazacle et de Carbonne

| Années | Aloses | Anguilles | Lamproies | Saumons | Truites de mer |
|--------|--------|-----------|-----------|---------|----------------|
| 1993   | 18554  | 288       | 2086      | 46      | 55             |
| 1994   | 85813  | 4482      | 107       | 134     | 109            |
| 1995   | 85624  | 1460      | 741       | 117     | 68             |
| 1996   | 106706 | 2009      | 2382      | 115     | 108            |
| 1997   | 98819  | 3986      | 663       | 62      | 60             |
| 1998   | 49074  | 0         | 1618      | 90      | 39             |
| 1999   | 36373  | 59        | 222       | 255     | 22             |
| 2000   | 32584  | 49        | 789       | 436     | 56             |
| 2001   | 25277  | 18        | 219       | 599     | 15             |
| 2002   | 17460  | 33505     | 4147      | 351     | 114            |
| 2003   | 22269  | 101940    | 18344     | 88      | 20             |
| 2004   | 19993  | 32869     | 2834      | 126     | 59             |
| 2005   | 18306  | 68831     | 2132      | 45      | 93             |
| 2006   | 9671   | 35395     | 434       | 128     | 3              |
| 2007   | 2979   | 103613    | 5626      | 150     | 3              |
| 2008   | 1464   | 67201     | 19        | 204     | 57             |
| 2009   | 1856   | 18600     | 8990      | 71      | 156            |
| 2010   | 9403   | 91841     | 1672      | 100     | 19             |
| 2011   | 2794   | 1862      | 543       | 165     | 2              |
| 2012   | 733    | 60819     | 401       | 133     | 29             |
| 2013   | 630    | 40509     | 0         | 51      | 2              |
| 2014   | 1100   | 125730    | 0         | 142     | 0              |
| 2015   | 429    | 79328     | 1         | 219     | 3              |
| 2016   | 902    | 46497     | 0         | 149     | 5              |
| 2017   | 875    | 138607    | 0         | 86      | 0              |
| 2018   | 137    | 194636    | 0         | 77      | 0              |
| 2019   | 1630   | 26318     | 0 141     |         | 12             |
| 2020   | 364    | 53258     | 4         | 168     | 5              |

Figure 31 : Bilan annuel des passages de poissons migrateurs au niveau de la station de Golfech entre 1993 et 2020

| Années | Aloses | Anguilles | Lamproies | Saumons | Truites de mer |
|--------|--------|-----------|-----------|---------|----------------|
| 1993   | 3765   | 19        | 652       | 21      | 49             |
| 1994   | 8010   | 19        | 4         | 55      | 54             |
| 1995   | 20546  | 31        | 84        | 37      | 53             |
| 1996   | 20279  | 8         | 591       | 61      | 49             |
| 1997   | 16389  | 57        | 40        | 10      | 34             |
| 1998   | 4554   | 12        | 207       | 37      | 27             |
| 1999   | 381    | 1         | 30        | 40      | 49             |
| 2000   | 713    | 39        | 183       | 73      | 64             |
| 2001   | 1672   | 8         | 80        | 123     | 69             |
| 2002   | 802    | 4         | 86        | 121     | 61             |
| 2003   | 1393   | 44        | 3617      | 38      | 14             |
| 2004   | 259    | 13        | 23        | 33      | 17             |
| 2005   | 322    | 131       | 9         | 10      | 14             |
| 2006   | 261    | 59        | 0         | 47      | 3              |
| 2007   | 18     | 63        | 4         | 31      | 4              |
| 2008   | 4      | 117       | 0         | 73      | 12             |
| 2009   | 22     | 138       | 2         | 22      | 31             |
| 2010   | 11     | 153       | 0         | 24      | 5              |
| 2011   | 5      | 76        | 0         | 50      | 1              |
| 2012   | 1      | 111       | 0         | 21      | 3              |
| 2013   | 0      | 351       | 0         | 13      | 0              |
| 2014   | 0      | 283       | 0         | 14      | 0              |
| 2015   | 111    | 815       | 0         | 46      | 0              |
| 2016   | 1      | 0         | 0         | 37      | 1              |
| 2017   | 4      | 0         | 0         | 14      | 0              |
| 2018   | 1      | 451       | 0         | 8       | 0              |
| 2019   | 0      | 0 26 0    |           | 8       | 0              |
| 2020   | 1      | 0         | 0         | 60      | 0              |

Figure 32 : Bilan annuel des passages de poissons migrateurs au niveau de la station du Bazacle entre 1993 et 2020

| Années | Aloses | Anguilles | Lamproies | Saumons | Truites de mer |
|--------|--------|-----------|-----------|---------|----------------|
| 2000   | 3      | 19        | 10        | 22      | 19             |
| 2001   | 36     | 41        | 5         | 41      | 12             |
| 2002   | 1      | 40        | 0         | 53      | 11             |
| 2003   | 6      | 594       | 434       | 13      | 0              |
| 2004   | 3      | 125       | 29        | 15      | 1              |
| 2005   | 1      | 183       | 2         | 4       | 2              |
| 2006   | 5      | 282       | 0         | 26      | 0              |
| 2007   | 0      | 44        | 2         | 9       | 1              |
| 2008   | 0      | 153       | 0         | 43      | 0              |
| 2009   | 0      | 176       | 0         | 12      | 5              |
| 2010   | 0      | 183       | 0         | 11      | 0              |
| 2011   | 0      | 194       | 0         | 22      | 0              |
| 2012   | 0      | 57        | 0         | 4       | 0              |
| 2013   | 0      | 105       | 0         | 1       | 0              |
| 2014   | 0      | 28        | 0         | 5       | 0              |
| 2015   | 0      | 49        | 0         | 20      | 0              |
| 2016   | 0      | 59        | 0         | 16      | 0              |
| 2017   | 0      | 131       | 0         | 5       | 0              |
| 2018   | 0      | 573       | 0         | 0       | 0              |
| 2019   | 0      | 327       | 0         | 9       | 0              |
| 2020   | 0      | 120       | 0         | 12      | 0              |

Figure 33 : Bilan annuel des passages de poissons migrateurs au niveau de la station de Carbonne entre 2000 et 2020

## 4.2.1 Migration de l'alose

## 4.2.1.1 Le suivi à Golfech

| Année             | Janvier | Février | Mars | Avril | Mai     | Juin  | Juillet | Août | Septembre | Octobre | Novembre | Décembre | Total général |
|-------------------|---------|---------|------|-------|---------|-------|---------|------|-----------|---------|----------|----------|---------------|
| 1993              | 0       | 0       | 0    | 6     | 5922    | 12364 | 255     | 7    | 0         | 0       | 0        | 0        | 18554         |
| 1994              | 0       | 0       | 0    | 175   | 54754   | 28883 | 1997    | 4    | 0         | 0       | 0        | 0        | 85813         |
| 1995              | 0       | 0       | 0    | 1029  | 46080   | 36161 | 2354    | 0    | 0         | 0       | 0        | 0        | 85624         |
| 1996              | 0       | 0       | 0    | 2628  | 58074   | 31419 | 14585   | 0    | 0         | 0       | 0        | 0        | 106706        |
| 1997              | 0       | 0       | 0    | 509   | 66544   | 25822 | 5925    | 18   | 1         | 0       | 0        | 0        | 98819         |
| 1998              | 0       | 0       | 0    | 340   | 24591   | 22850 | 1293    | 0    | 0         | 0       | 0        | 0        | 49074         |
| 1999              | 0       | 0       | 1    | 1596  | 22917   | 11753 | 99      | 7    | 0         | 0       | 0        | 0        | 36373         |
| 2000              | 0       | 0       | 2    | 1233  | 24584.3 | 5548  | 1217    | 0    | 0         | 0       | 0        | 0        | 32584.3       |
| 2001              | 0       | 0       | 33   | 520   | 10986   | 11715 | 2020    | 3    | 0         | 0       | 0        | 0        | 25277         |
| 2002              | 0       | 0       | 0    | 54    | 5677    | 10667 | 1056    | 6    | 0         | 0       | 0        | 0        | 17460         |
| 2003              | 0       | 0       | 0    | 156   | 5723    | 16349 | 41      | 0    | 0         | 0       | 0        | 0        | 22269         |
| 2004              | 0       | 0       | 6    | 788   | 10618   | 8036  | 474     | 67   | 3         | 1       | 0        | 0        | 19993         |
| 2005              | 0       | 0       | 0    | 540   | 9447    | 8166  | 153     | 0    | 0         | 0       | 0        | 0        | 18306         |
| 2006              | 0       | 0       | 47   | 651   | 7717    | 1208  | 47      | 0    | 1         | 0       | 0        | 0        | 9671          |
| 2007              | 0       | 0       | 10   | 1368  | 1099    | 459   | 40      | 3    | 0         | 0       | 0        | 0        | 2979          |
| 2008              | 0       | 0       | 7    | 304   | 924     | 200   | 27      | 0    | 2         | 0       | 0        | 0        | 1464          |
| 2009              | 0       | 0       | 1    | 147   | 1137    | 564   | 7       | 0    | 0         | 0       | 0        | 0        | 1856          |
| 2010              | 0       | 0       | 66   | 3323  | 5153    | 850   | 11      | 0    | 0         | 0       | 0        | 0        | 9403          |
| 2011              | 0       | 0       | 31   | 579   | 1999    | 172   | 13      | 0    | 0         | 0       | 0        | 0        | 2794          |
| 2012              | 0       | 0       | 45   | 30    | 498     | 147   | 13      | 0    | 0         | 0       | 0        | 0        | 733           |
| 2013              | 0       | 0       | 9    | 72    | 441     | 102   | 5       | 1    | 0         | 0       | 0        | 0        | 630           |
| 2014              | 0       | 0       | 13   | 152   | 853     | 77    | 4       | 1    | 0         | 0       | 0        | 0        | 1100          |
| 2015              | 0       | 0       | 50   | 146   | 125     | 103   | 4       | 1    | 0         | 0       | 0        | 0        | 429           |
| 2016              | 0       | 2       | 30   | 82    | 491     | 269   | 27      | 1    | 0         | 0       | 0        | 0        | 902           |
| 2017              | 0       | 2       | 17   | 53    | 580     | 175   | 48      | 0    | 0         | 0       | 0        | 0        | 875           |
| 2018              | 0       | 0       | 3    | 73    | 21      | 24    | 15      | 1    | 0         | 0       | 0        | 0        | 137           |
| 2019              | 0       | 0       | 2    | 203   | 782     | 643   | 0       | 0    | 0         | 0       | 0        | 0        | 1630          |
| 2020              | 0       | 2       | 16   | 119   | 180     | 39    | 8       | 0    | 0         | 0       | 0        | 0        | 364           |
| Moyenne 1993-2019 | 0       | 0       | 14   | 621   | 13620   | 8694  | 1175    | 4    | 0         | 0       | 0        | 0        | 24128         |
| Moyenne 2003-2019 | 0       | 0       | 20   | 510   | 2800    | 2208  | 55      | 4    | 0         | 0       | 0        | 0        | 5598          |

Figure 34 : Répartition mensuelle des aloses contrôlées à Golfech entre 1993 et 2020

En 2020, **364 aloses** ont emprunté l'ascenseur à poissons entre le 14 février (9° semaine) et le 9 juillet (28° semaine), ce qui est très faible, 2eme plus mauvais résultat sur la station depuis 1993. Il est observé une chute sensible des effectifs contrôlés depuis 1998, chute accentuée à partir de 2006 où la moyenne des passages sur ces 8 dernières années n'est que de 2 400 individus (2006 – 2019) contre 47 500 aloses sur la période 1993 – 2005.

Les premiers individus ont été contrôlés au mois de mars pour une température de l'eau avoisinant les 10°C. La figure 35 (ci-après) montre très clairement que les passages à l'ascenseur à poissons sont rythmés par les paramètres environnementaux, avec des passages plus importants lorsque la variation de la température entre le jour J et le jour J+1 est positive. A noter un pic de 200 individus le 11 mai à la suite d'une hausse brutale de la température de l'eau.

La migration de l'alose à Golfech en 2020 est fortement perturbée par les trois crues observées les 22 avril, 11 mai et 4 juin entrainant à chaque fois un arrêt de l'ascenseur à poissons. Les individus présents au droit de l'obstacle ont certainement dû se replier sur les zones de frayères situées en aval et attendre une période favorable à la reproduction.

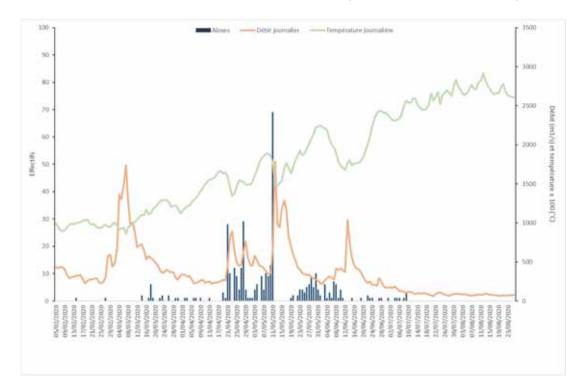



Figure 35 : Evolution des passages journaliers d'aloses à Golfech en 2020 en fonction du débit et de la température.

La Figure 36 montre la répartition des aloses observées à l'ascenseur à poissons de Golfech (%) en fonction de classes de débits en 2020. Il apparait assez nettement qu'environ 30 % des individus sont observés pour des débits supérieurs à 600 m³/s, gamme de débit présente uniquement pendant 8 % du temps en 2020. Le pic d'aloses a été observé entre les 2 crues d'avril et mai, juste avant que le débit ne remonte au-dessus de 900 m3/s et que l'ascenseur soit arrêté. Il est très probable que sans cet arrêt du système de franchissement, le nombre de grande alose contrôlé au niveau de l'ascenseur à poissons aurait été beaucoup plus important.

Le même exercice a été fait avec les classes de températures (pas de 2°C). Ainsi, 70 % des individus empruntent l'ascenseur à poissons pour des températures moyennes de l'eau comprises entre 14 et 20 °C, gammes présentent 50 % du temps au niveau de Golfech en 2020.



Figure 36 : Répartition des passages d'aloses (%) à l'ascenseur à poissons de Golfech en fonction de classes de débit (pas de 50 m³/s) en 2020



Figure 37 : Répartition des passages d'aloses (%) à l'ascenseur à poissons de Golfech en fonction de classes de température (pas de 2°C)

## 4.2.1.2 Suivi

Pour connaître la totalité du stock reproducteur sur le bassin de la Garonne, il est nécessaire de suivre la reproduction sur les sites se situant en aval de la station de contrôle de Golfech. En effet, durant la phase active de la ponte de cette espèce, les couples évoluent en surface, en tournant sur eux-mêmes, et frappent violemment la surface de l'eau à l'aide de leur nageoire caudale. Ce type de comportement est dénommé "bull" et fait un bruit caractéristique qui dure entre deux et dix secondes. Pendant ce laps de temps, les œufs sont émis par la femelle (50 000 à 250 000 œufs par kilo de femelle) et fécondés par le mâle. Généralement, on compte un mâle pour une femelle lors du bull, mais il n'est pas rare d'observer deux mâles, parfois trois, pour une seule femelle. L'alose a une ponte fractionnée, c'est à dire qu'elle va frayer en plusieurs fois. A chaque fraie, une partie des "œufs" contenus

dans ses ovaires sera libérée. La fatigue des différentes reproductions cumulée à la migration, peut entraîner une mort post-reproductrice massive des géniteurs juste après le "bull" (Figure 37).



Figure 38 : Bull d'alose (© Didier Taillefer/Sméag)

La durée de ponte s'étend de vingt-trois heures à cinq heures du matin, mais la période de plus forte activité est réduite à la plage horaire comprise entre une heure et trois heures du matin (Figure 38), quand la température de l'eau atteint environ 16°C.

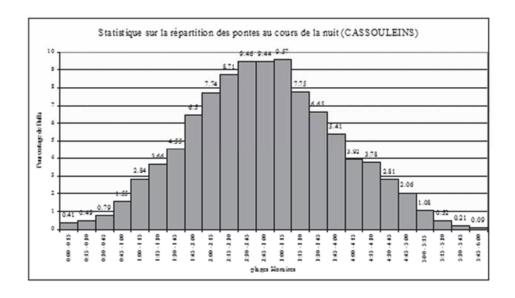



Figure 39 : Modèle statistique sur la répartition des pontes au cours de la nuit (CASSOU-LEINS, 1985)

Sur le bassin de la Garonne, le suivi de la reproduction de l'alose s'effectue chaque année sur les rives de la Garonne (principalement) et du Lot à Aiguillon. Les rivières Tarn et Aveyron au niveau du département du Tarn-et-Garonne peuvent être prospectées si le nombre de géniteurs franchissant Golfech est significatif (plusieurs milliers de géniteurs). 5 frayères principales sont reconnues et étudiées en moyenne Garonne et une sur le Lot (Figure 40). 3 autres frayères secondaires sont également suivies.

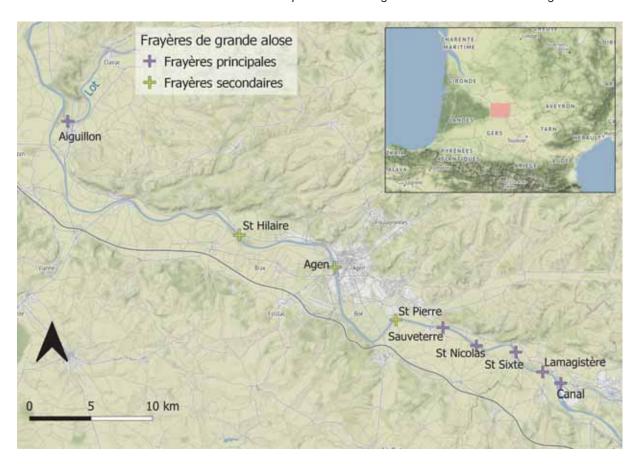



Figure 40 : Localisation géographique des zones de frayères en aval de Golfech sur la Garonne

Sur la Garonne, la méthode de suivi est dite « directe », à savoir que le personnel en charge de ces suivis se déplace sur le terrain, la nuit, pour observer et comptabiliser les bulls. En effet, il existe une autre méthode consistant à poser des enregistreurs au droit des frayères et récupérer les enregistrements pour un dépouillement ultérieur. Cette technique est uniquement utilisée pour le site du canal juste en aval de l'ascenseur sur trois points d'écoute (Figure 41). Cependant, ce type de suivi est difficilement applicable sur les autres sites de reproduction de la Garonne du fait de la proximité des routes et/ou voies de chemin de fer qui perturbent considérablement la qualité des enregistrements.

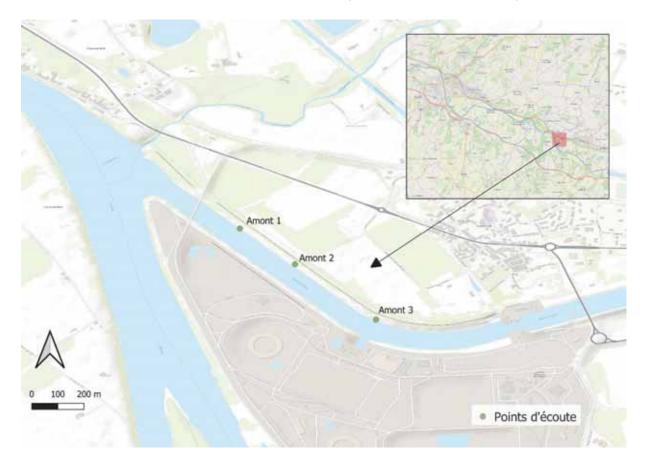



Figure 41 : Localisation des trois sites favorables à l'enregistrement des bulls

Concernant l'organisation des suivis : 3 binômes sont constitués pour effectuer les suivis quasiment chaque nuit : 2 binômes de la Réserve Naturelle de la Frayère d'Alose d'Agen et 1 binôme MIGADO. La répartition des zones de suivi varie en fonction de l'activité mais classiquement, l'équipe MIGADO suit les frayères de Lamagistère, l'amont de St Sixte et du canal de fuite de la centrale hydroélectrique de Golfech, les autres frayères sont suivies par le personnel de la Réserve Naturelle de la Frayère d'Alose d'Agen (RNFA). Cette année en raison du COVID, aucun stagiaire n'a pu être recruté pour les suivis. Cependant le minimum a pu être réalisé par le personnel (CDD notamment).

| Personnel MIGADO        | Jours sur le dossier |
|-------------------------|----------------------|
| Chargé de mission       | 25                   |
| Technicien              | 33                   |
| Stagiaire               | 0                    |
| Personnel administratif | 8,1                  |

Figure 42 : Nombre de jours travaillés sur le projet de suivi de la reproduction de la grande alose sur la moyenne Garonne (MPALAG20) par le personnel de MIGADO en 2020.

Les premiers suivis (RNFA) ont débuté le 21 avril pour se terminer au 4 juillet. De l'activité a été observée (38 bulls) lors de la première nuit et un seul bull sur la dernière. Au total 49 nuits (sur les 75 de la période considérée) ont été suivies par la RNFA et MIGADO. Plusieurs sites sont prospectés par nuit par les différentes équipes. Ainsi, en moyenne 5

heures de présence par nuit ont été effectuées entre toutes les équipes sur le terrain.

| Sites   | Aiguillon | St Hilaire de<br>Lusignan | Agen | Saint Pierre<br>de Gaubert |   | Nicolas de | Saint Sixte | Lamagistère | Canal de<br>fuite | тсс |
|---------|-----------|---------------------------|------|----------------------------|---|------------|-------------|-------------|-------------------|-----|
| Nbre de |           |                           |      |                            |   |            |             |             |                   |     |
| nuits   | 18        | 2                         | 30   | 1                          | 9 | 28         | 35          | 20          | 14                | 3   |
| suivies |           |                           |      |                            |   |            |             |             |                   |     |

Figure 43 : Nombre de nuits suivies sur les différentes frayères d'aloses

Au total, 991 ¼ d'heures ont été contrôlés entre 23 h 30 et 5 h 15 dont plus de 66 % entre 1 h et 3 h 30, soit au plus fort de l'activité. Cet effort de suivi permet de limiter les erreurs grossières lors de l'extrapolation des données et ainsi d'estimer le plus précisément possible le stock reproducteur d'aloses en aval de Golfech. Cette année, quelques prospections ont eu lieu dans le tronçon court-circuité (TCC) du complexe Malause/Golfech afin de vérifier la présence de géniteurs sur ce secteur.

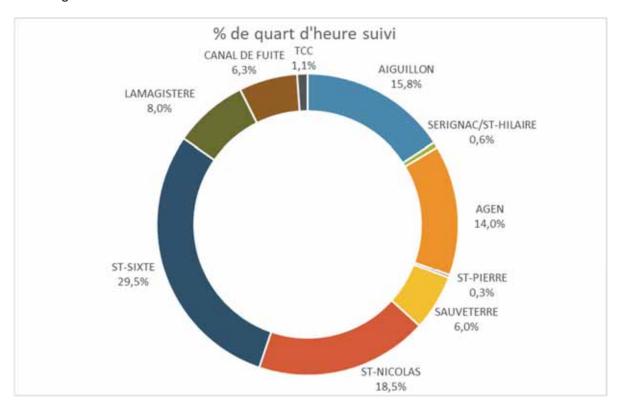



Figure 44 : Nombre de  $\frac{1}{4}$  d'heure suivis sur l'ensemble des frayères de grande alose en 2020

La répartition de l'activité par ¼ d'heure propre à l'année 2020 a pu être établie et comparée à celle observée par Cassou-Leins dans le milieu des années 80. Cependant, il peut apparaitre un décalage des pics d'activité en fonction de la période. Du fait des conditions climatiques couplées aux observations de terrain, il a été décidé d'établir 4 courbes

d'extrapolation différentes au cours de la saison de reproduction, ceci dans le but d'avoir une extrapolation de la reproduction la plus fidèle possible :

- Du 21/04 au 12/05 : plus de 95 % de l'activité de ponte se situe entre 0 h 00 et 3 h 00 pour une température moyenne de la Garonne de 16,4°C (min 14,5 °C max 19,1°C) et un débit moyen de 592 m³/s (min 351 m³/s max 1786 m³/s).
- Du 13/05 au 24/05 : la reproduction se décale légèrement avec 95 % de l'activité comprise entre 00 h 30 et 3 h 30. La température moyenne de la Garonne est de 17,2°C (min 14,4°C max 19,3°C) et un débit moyen de 781 m³/s (min 359 m³/s max 1288 m³/s).
- Du 25/05 au 07/06 : la reproduction se décale encore avec 95% de l'activité entre 1h et 4h. La température moyenne est de 21°C (min 18,8 °C max 22,5°C) et un débit moyen de 287 m³/s (min 221 m³/s max 344 m³/s).
- Du 08/06 au 04/07 : sur la fin de saison la reproduction se situe à 95% entre 2h et 5h du matin. La température moyenne est de 20,4°C (min 16,8°C max 24,4°C) et un débit moyen de 342 m³/s (min 166 m³/s max 1039 m³/s).



Figure 45 : Comparaison de la répartition nocturne de l'activité de ponte de la grande alose en 2020 au niveau des frayères en aval de Golfech avec celle estimée par Cassou-Leins en 1980

Au total, après extrapolation des données, **10 881 bulls** ont été estimés sur l'ensemble des frayères de la moyenne Garonne en 2020. Il est ensuite possible d'en déduire le nombre de géniteurs présents sur les frayères étudiées (G) et, par la même occasion, en totalisant le nombre de bulls obtenus pour la saison sur toutes les frayères, le nombre total de géniteurs en moyenne Garonne. Tout ceci en supposant que les géniteurs ne se reproduisent que sur une seule frayère, que seule une femelle et un mâle sont impliqués dans un bull et qu'une

femelle pond en moyenne entre 8 et 12 fois (CHANSEAU M. et AL., 2005).

Soit : G = 2N / 10 avec N = Nbre de bulls et G = Nbre de géniteurs

Ainsi, le stock reproducteur estimé en aval de Golfech est de 2 176 grandes aloses. En ajoutant ce nombre aux 364 aloses de la station de contrôle de Golfech, on obtient **2540 géniteurs**.

| Sites             | Aiguillon | Agen | Sauveterre<br>Saint Denis | St Nicolas<br>de la<br>Balerme | Saint Sixte | Lamagistère | Canal de<br>fuite |  |
|-------------------|-----------|------|---------------------------|--------------------------------|-------------|-------------|-------------------|--|
| Nbre de géniteurs | 248       | 17   | 450                       | 613                            | 827         | 18          | 3                 |  |

Figure 46 : Frayères actives et nombre de géniteurs en 2020 sur le Lot (Aiguillon) et la Garonne

Contrairement à une « assez bonne » migration en 2019, en 2020 la migration à Golfech est la deuxième plus faible migration enregistrée avec seulement 364 individus. Comme régulièrement observé ces dernières années, les géniteurs se situent classiquement sur les frayères de St Sixte, St Nicolas et Sauveterre notamment. Avec une présence notable d'individus (11 %) sur la frayère d'Aiguillon sur le Lot. L'hydrologie printanière a été marquée par des pics de débits assez importants avec 770 m3/s le 29 avril, 1790 m3/s le 12 mai, 1040 m3/s le 13 juin. De la même manière, les températures ont largement varié avec des chutes de plusieurs degrés (de 19,1°C le 9 mai à 14,4°C le 13 mai par exemple) qui ont limité fortement l'activité de reproduction. On peut donc considérer que les conditions de reproduction en 2020 n'ont pas été optimales avec de l'activité entrecoupée par les hausses de débits et chutes des températures.

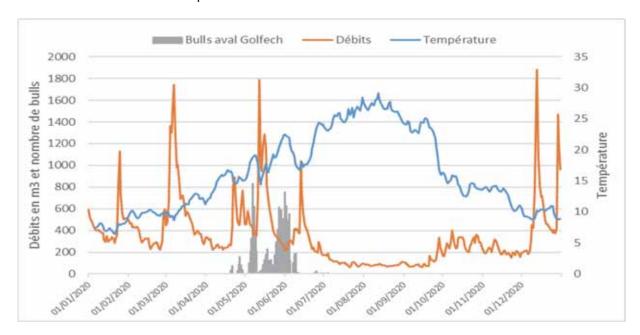



Figure 47 : Evolution des débits et de la température au cours de la saison en lien avec l'activité de reproduction

L'alose présentant un homing de bassin, elle se doit d'être gérée à l'échelle du bassin Garonne Dordogne. Sur la Dordogne cette année, 2 684 individus ont franchi Tuilières qui se rajoutent aux 11 295 individus en reproduction sur le secteur aval Tuilières.

Ainsi, les résultats de 2020 donnent une estimation du stock reproducteur à **16 519 géniteurs**. Cet effectif est supérieur aux huit années précédentes et dans la continuité d'une légère augmentation mais reste tout de même à des valeurs extrêmement faibles en regard des migrations historiques. Des programmes sont actuellement en cours afin d'essayer de comprendre les facteurs qui limitent le retour de la population à des effectifs plus importants, notamment suite à l'arrêt de la pêche en 2008.

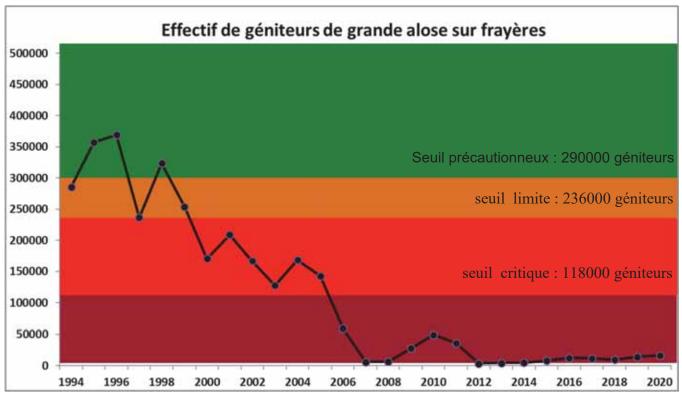



Figure 48 : Evolution du stock de grande alose sur le bassin Garonne Dordogne entre 1994 et 2020

La Figure 48 montre l'évolution du stock reproducteur d'aloses sur le bassin Garonne Dordogne. D'après le *tableau de bord alose du bassin Garonne Dordogne* (Collin S, Rochard E, 2012), l'indicateur de population « effectif sur frayères », est situé depuis maintenant 14 ans largement en dessous du seuil critique de 118 000 individus, seuil basé sur la relation stockrecrutement (S-R) définie par Rougier (2010).

# Prédation sur bull :

En 2020, en raison du COVID aucun suivi particulier n'a pu être fait sur la prédation du silure dans le cadre notamment de la collaboration avec le Laboratoire ECOLAB de l'université Paul Sabatier de Toulouse. D'ailleurs aucune pêche de régulation (AADPPED33 et SMEAG) au niveau du canal de sortie de Golfech ou sur les frayères de Saint Sixte et Saint Nicolas n'ont été réalisées. Suite à la publication des résultats (Boulêtreau S. et al, 2020) sur les attaques de bulls où il a été observé une fréquence de 37 % d'attaques en 2019 au niveau du

canal de fuite (12% à « l'oreille »), les suivis en 2021 consisteront à déterminer la proportion d'attaques sur des frayères avec un fonctionnement plus naturel comme St Sixte, St Nicolas ou Sauveterre par exemple.

#### 4.2.1.3 Le suivi au Bazacle et à Carbonne

Une alose a été observée au Bazacle le 28 mai pour une température de l'eau de 18.4 °C et un débit de 164 m3/s et aucune à Carbonne en 2020. Le passage de cette espèce à ce niveau de la Garonne est fortement dépendant des effectifs observés à Golfech.

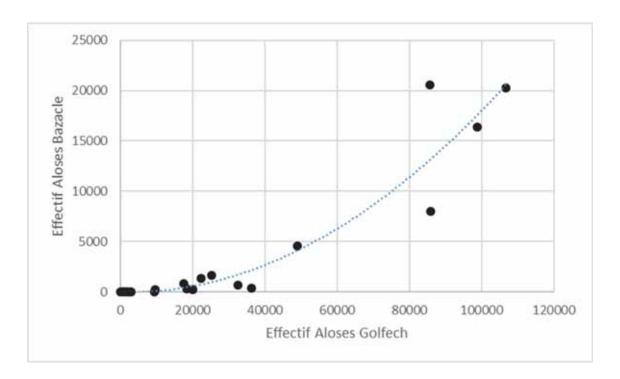



Figure 49 : Relation entre le nombre d'aloses observées à Golfech et le nombre d'aloses observées au Bazacle entre 1993 et 2020

La figure 50 montre assez nettement que tant qu'environ 10 000 aloses ne sont pas comptabilisées à Golfech, quasiment aucun n'individu ne parvient à migrer en amont de Toulouse. Cette figure montre également qu'il faut attendre 20 000 individus contrôlés à Golfech pour que les effectifs contrôlés au Bazacle deviennent relativement importants. Ainsi, observer 1 alose au Bazacle alors même que seulement 364 individus ont été contrôlés à Golfech relève de l'exceptionnel!

A Carbonne, limite amont de l'aire de répartition de cette espèce sur l'axe Garonne, plus aucune alose n'est contrôlée depuis 2006, en relation avec les très faibles effectifs contrôlés au Bazacle.

## 4.2.2 Migration de l'anguille

## 4.2.2.1 Le suivi au niveau de Golfech

L'ascenseur à poissons de Golfech, comme la plupart des dispositifs de ce type, étant

peu fonctionnel pour l'anguille (espacement des grilles de la nasse, débit d'attrait important...), une passe expérimentale a été installée dans l'enceinte de l'ascenseur en 2002, complétée en 2008 par un dispositif complet et définitif permettant aux individus de franchir totalement l'ouvrage. Depuis cette date, un suivi par piégeage est effectué régulièrement pour échantillonner la population migrante (biométrie, état sanitaire, dénombrement...). Cependant, afin d'avoir un comptage exhaustif des anguilles sur ce site, un compteur à résistivité a été installé à la sortie de la passe.

L'ouvrage mesure 45 m de long est et composée de 3 parties :

- Une partie aval d'environ 15 m.
- Un bassin tampon.
- Une partie amont d'environ 30 m.

Le bassin tampon a été installé pour éviter que des individus progressant sur la rampe et n'ayant pas terminé leur cheminement en fin de nuit ne redévalent la totalité du système de franchissement. Ainsi, toute anguille ayant franchi à minima la partie aval de la rampe lors d'une nuit sera en capacité de franchir la totalité de l'obstacle la même nuit ou la nuit suivante.

Enfin, depuis 2004, une fraction de la population est marquée avec des transpondeurs passifs (pit tag) et relâchée à l'aval de l'ouvrage. Les recaptures de ces individus permettent d'obtenir des informations importantes sur les rythmes de migration et d'observer leur comportement sur la passe. Ainsi, des plaques de détection de type TROVAN sont installées à des endroits stratégiques (aval rampe, zone intermédiaire, sortie) et les données issues de ces recaptures sont analysées en partenariat avec EDF R&D et l'IRSTEA de Bordeaux.



Figure 50 : La passe à anguilles actuelle de Golfech. En A, la passe partie aval, en B, la passe partie amont avec le bassin tampon (bleu).

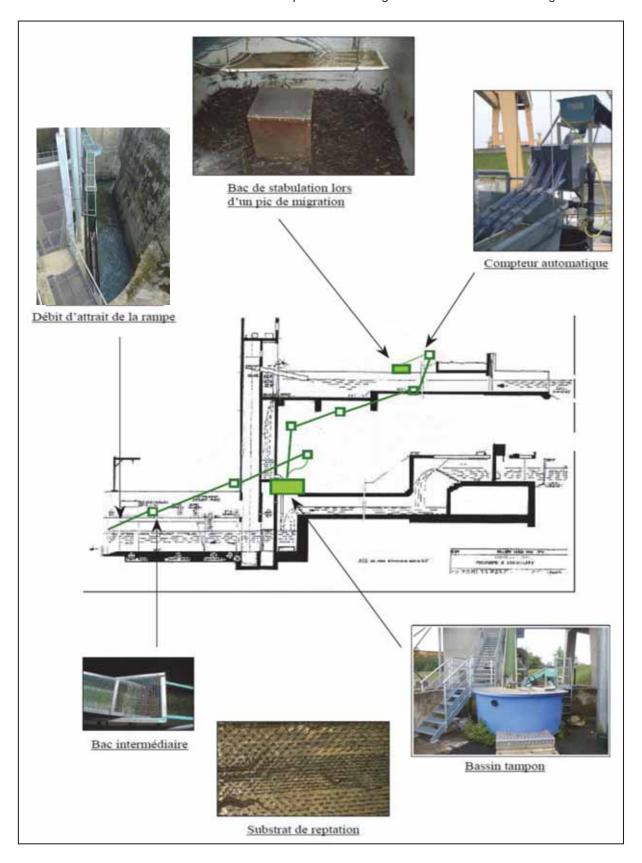



Figure 51 : Schéma de la rampe à anguilles définitive

#### 4.2.2.2 Résultats 2020 au niveau de Golfech

#### Période de fonctionnement :

Pour la saison **2020**, la rampe spécifique à anguilles a été **mise en service le 30 avril** (une quinzaine de jours plus tard que les saisons précédentes, à cause du manque de personnel sur site du au confinement mais aussi à une température de l'eau très froide pour la saison). La première anguille a franchi le système la nuit suivant la mise en service.

La **saison a été clôturée le 15 octobre** après 15 jours sans aucun passage (dernière anguille passée le 1<sup>er</sup> octobre).

## Bilan des franchissements :

Cette année, ce sont <u>48416 anguilles qui ont été comptabilisées comme ayant franchi la rampe spécifique.</u> D'après les études des années précédentes sur ce site, 10% d'anguilles auraient franchi l'obstacle par <u>l'ascenseur à poissons : 4841 individus.</u>

Ainsi, la population d'anguilles estimée ayant franchi l'aménagement de Golfech est de **53257** individus en 2020.

## Comparatif interannuel :

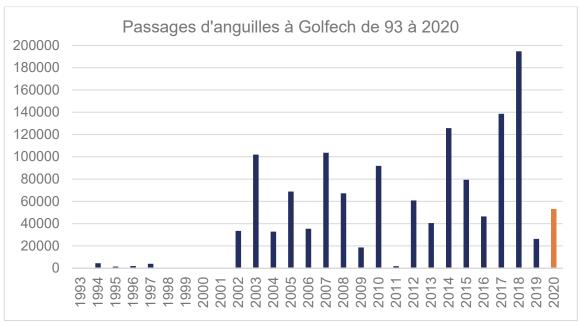



Figure 52 : Franchissements d'anguilles à Golfech de 1993 à 2020

Depuis la mise en service de la rampe spécifique à anguilles en 2002, la moyenne annuelle des passages sur le site avoisine les 70000 individus. Le maximum enregistré date de 2018 avec 194000 anguillettes observées. Avec seulement 53257 passages, 2020 se situe dans une année de plutôt faibles passages au niveau de Golfech.

# Influence du débit et de la température :

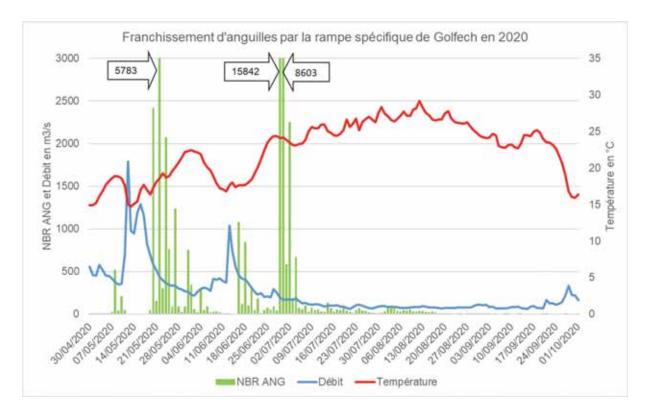



Figure 53 : Passages journaliers en fonction du débit et de la température de l'eau.

La figure 53 fait apparaître un réel démarrage de la migration avec l'enregistrement de 515 anguilles le 8 mai 2020 pour un débit avoisinant les 400 m3 /s et une température de 18,9°C. Cependant, une crue oblige l'exploitant à fermer l'ascenseur à poissons (et de ce fait la passe à anguilles) du 12 au 18 mai, stoppant quasiment immédiatement la progression des anguilles en amont de l'aménagement hydroélectrique.

Les franchissements sont significatifs dès la remise en service du système entre le 20 et le 27 mai. Un pic à 5783 individus apparait le 22 mai pour une température de 18,6 °C et un débit de 435 m3/s.

Un refroidissement de la température de l'eau du 5 au 14 juin ainsi que deux jours d'arrêt des ouvrages de franchissement expliquent les faibles passages durant cette période.

Le pic annuel est enregistré la nuit orageuse du 29 au 30 juin avec 15842 anguillettes comptabilisées pour une température moyenne de l'eau de 24,1°C et un débit moyen journalier de 191m3/s. Le lendemain, 8603 individus ont encore gravi la rampe. Ainsi, la moitié des passages de la saison (24445/48416 sur la rampe) ont été enregistrés durant ces deux nuits.

Enfin, à partir du 8 juillet lorsque la température a dépassé les 25°C, les passages sont devenus très faibles.

# - Fonctionnement du débit d'attrait de l'ascenseur à poissons :

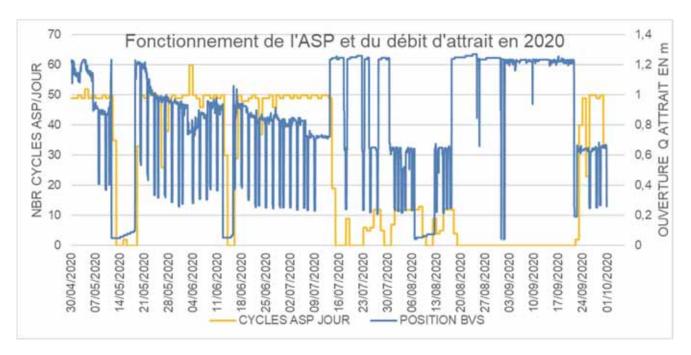



Figure 54 : Fonctionnement de l'ascenseur à poissons et de son débit d'attrait en 2020.

La figure 54 fait apparaître le fonctionnement de l'ascenseur ainsi que les variations de l'ouverture du clapet qui délivre le débit d'attrait aux entrées de l'ascenseur à poissons et de la rampe à anguilles.

Après échange avec l'exploitant, il apparait que ce débit est proche de 0 pour des valeurs d'ouverture inférieures à 0,4m et au maximum pour de valeurs supérieures à 1,2m. Le débit entonné par l'ouvrage varie dans ces cas-là en fonction de la côte de la retenue entre 7 et 10 m3/s.

Ce graphique met en évidence les arrêts des systèmes de franchissement pour crue en mai et juin (cf. paragraphe précédent).

## Gestion du débit à l'étiage :

A noter que les hausses de ce débit d'attrait entre le 13 juillet et le 21 septembre sont dues au mode de gestion de l'ouvrage Malause Golfech par l'exploitant en période d'étiage.

Le débit réservé dans le TCC étant de 40m3/s, et le débit minimum turbinable par un groupe de l'usine étant de 35 m3/s, lorsque le débit de la Garonne passe sous la barre des 80 m3/s, L'usine est arrêtée et la totalité du débit transite alors par le barrage. Or, la station de pompage de refroidissement de la centrale nucléaire est située dans le canal de fuite de l'usine hydroélectrique. Celui-ci nécessite du courant afin de nettoyer les filtres rotatifs. Dans ces conditions d'étiage, 10 m3/s doivent être restitués à l'usine soit par l'ascenseur à poissons (hausses débit attrait), soit par le clapet de chasse. Lorsque le débit transite par l'ascenseur les systèmes de franchissements sont fermés (ASP et passe à anguilles).

Il parait primordial pour les prochaines années de mettre en place une gestion des débits à l'étiage qui permette le bon fonctionnement des systèmes de franchissement de Golfech.



Figure 55 : Répartition de débits > 80 m3/s dans le complexe Malause / Golfech.



Figure 56 : Répartition de débits <= 80 m3/s dans le complexe Malause / Golfech.



Figure 57 : Restitution du débit à l'usine de Golfech pendant l'étiage 2020.

## Baisses nocturnes du débit d'attrait :

Entre le 8 mai et le 10 juillet 2020, lorsque les migrations sont effectives, un protocole alterné de délivrance du débit d'attrait est mis en place. Ce débit est réglé par un technicien MIGADO en fonction du niveau d'eau de la Garonne (de 3 à 7 m3/s) afin d'attirer les poissons dans l'enceinte de l'ascenseur. Malheureusement, dans ces conditions, il est avéré depuis plusieurs années que les anguilles ont des difficultés à localiser le faible débit (quelques litres/s) de la rampe spécifique et donc à emprunter cet ouvrage.

Il a donc été décidé afin de perturber le moins possible la migration des autres espèces et d'améliorer les franchissements d'anguilles de diminuer ce débit d'attrait 4 nuits (1 nuit sur 2) par semaine de 22h à 5h du matin.

En 2020, durant cette période, excepté les arrêts dus aux crues, sur 1302 heures (du 8 mai au 10 juillet), le débit d'attrait a été diminué durant 198 heures, soit 15,2% du temps (28 nuits sur 54 possibles).

Ainsi, pour cette saison, en période de migration, lorsque le débit a été alterné, 45977 anguilles ont emprunté la passe dont 43279 : soit plus de 94%, les nuits ou le débit était diminué. Cette mesure, spécifique au site de Golfech, s'avère donc très favorable à l'espèce.

## - Passages horaires:

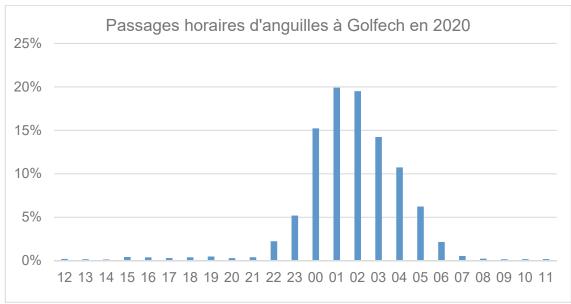



Figure 58 : Pourcentage de passages horaires des anguilles à Golfech en 2020.

De la même façon que les années précédentes, la quasi-totalité des migrations ont lieu la nuit. 90% des passages sont enregistrés entre 23 h et 6 h du matin.

# - Biométrie des individus migrants en 2020 :




Figure 59 : Répartition par classes de tailles des anguillettes à Golfech en 2020.

En 2020, 1028 anguilles ont été échantillonnées manuellement sur Golfech. Elles présentent des tailles comprises entre108 et 473mm. La moyenne est de 218,7 mm et la médiane 219,5mm. 89% des individus mesurent entre 16 et 30 cm. A noter que 9% ne dépassent pas les 16 cm.



Figure 60 : Evolution de la tailles des anguilles au cours de la saison 2020.

Les échantillonnages ont eu lieu de manière homogène au cours de la période de migration. La figure 60 met en évidence une diminution générale de la taille des anguilles au fil de la saison. Ainsi, en mai, la moyenne affiche 230 mm et la médiane 226 mm alors qu'elles sont respectivement de 210 mm et 213 mm au mois d'août. La proportion d'anguilles de petites taille varie fortement. Au mois de juin, seulement 2,8% des individus mesurent moins de 16 cm contre 14,4% en août. Ce paramètre pourrait avoir de l'influence sur l'efficacité du compteur à résistivité.

## Evaluation des systèmes de comptage automatiques

Le comptage automatique par résistivité :





Figure 61 : Photo du système de comptage par résistivité.

Depuis 2004, un compteur à résistivité est installé sur le site. Ce système placé sur des tubes de 50 mm de diamètre dans lesquels transite un débit constant et les anguillettes le cas échéant, mesure la résistivité entre deux électrodes espacées d'une quinzaine de cm.

Pendant le passage d'une anguille entre ces électrodes, la résistivité est modifiée. Si celle-ci dépasse un seuil défini en fonction des conditions sur le site, un signal horodaté est enregistré par le compteur. Ce signal est proportionnel à la taille de l'individu.

Les différents tests menés depuis plus de 15 ans sur ce compteur montrent que ce type d'appareil ne peut détecter les individus dont la taille est inférieure à 15 cm, sur le site de Golfech. Par ailleurs, les individus de grande taille ont tendance à générer plusieurs signaux et ainsi être comptés plusieurs fois.

Enfin, des signaux intempestifs peuvent apparaître avec la présence de composés organiques ou d'une modification (même très faible) du débit dans le système.

## Le comptage automatique par vidéo « deep learnig » :

La SCOP « Hizkia », spécialisée dans l'analyse vidéo et la base de données, développe un système de comptage automatique adapté aux anguillettes en migration. Le site de Golfech a été choisi depuis 2019 comme pilote du fait des importants passages enregistrés lors des pics de migration.



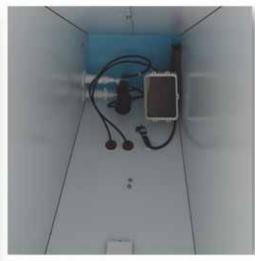



Figure 62 : Photo du système de comptage vidéo Hizkia.

Le système est composé, en sortie de passe, d'un caisson opaque permettant de limiter les reflets du soleil et d'une plaque en polyéthylène blanc permettant une large surface de détection et un nettoyage aisé. Sous le caisson, 2 caméras numériques sont installées et reliées à 2 ordinateurs différents : l'un permettant l'acquisition en continu des passages d'anguilles et l'autre équipé d'un logiciel d'analyse d'images n'enregistrant que les séquences où un « objet » (anguilles ou autres) est détecté. Enfin, un projecteur lumineux permet d'optimiser la qualité des images enregistrées.

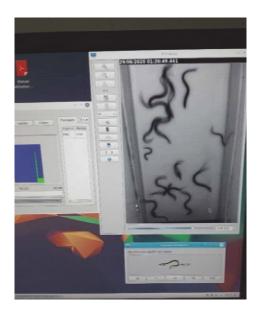



Figure 63 : Photo d'anguilles détectées par le système Hizkia en 2020 à Golfech

## - Fonctionnement des outils de comptage automatique en 2020 :

|                            | Compteur<br>résistivité | Compteur<br>vidéo HIZKIA |
|----------------------------|-------------------------|--------------------------|
| Mise en service            | 19/04/2020              | 11/06/2020               |
| Fin du suivi               | 15/10/2020              | 15/10/2020               |
| Nombre jours suivis 2020   | 179                     | 126                      |
| Nombre jours opérationnels | 167                     | 125                      |
| Problème déchargement      | 12                      | 0                        |
| Sur-comptage > 10%         | 4                       | 2                        |
| Sous-comptage > 10%        | 9                       | 1                        |

Figure 64 : Comparaison du fonctionnement des systèmes de comptage automatiques sur la saison 2020.

Malgré une installation tardive du système vidéo cette saison en raison du COVID et de problèmes d'acheminement du matériel, cet outil s'est révélé très fiable tout au long de la saison. Une nuit n'a pas été suivie car le logiciel n'a pas été remis en service. A noter la stabilité et l'efficacité du système même en présence de forts orages, éclairs...

A contrario et à l'image des années passées, le système à résistivité a présenté des problèmes récurrents comme des faux positifs dus à des variations de débit dans les tubes par exemple. Certains ont pu être corrigés par l'opérateur, entrainant un surcroît de travail sur les fichiers téléchargés, travail fastidieux et très subjectif. Par ailleurs, ces données peuvent provoquer une saturation de la mémoire du compteur entrainant une impossibilité de télécharger la donnée brute et par conséquent de la corriger. Pour pallier ce problème, le compteur a résistivité est constamment relié à un ordinateur pour sauvegarde, mais il s'avère

que parfois, ce système tombe en panne (liaison ordinateur compteur, arrêt de l'ordinateur...). Il est important de rappeler qu'il n'existe plus aujourd'hui d'interlocuteur pouvant faire progresser le compteur, fabriqué en 2004 et dont les composants et le système informatique associé sont désormais obsolètes et surtout non réparables.

# - Résultats et efficacité des comptages :

## Compteur à résistivité :

|                      | COMPEUR RESISTIVITE |
|----------------------|---------------------|
| comptage automatique | 13269               |
| comptage manuel      | 17467               |
| % efficacité         | 76%                 |

Figure 65 : Efficacité du compteur à résistivité en 2020.

La figure 65 montre que le compteur à résistivité ne présente pas une efficacité satisfaisante (76%). Cette évaluation a été réalisée grâce au piégeage puis au dénombrement manuel des individus. Cet échantillonnage porte cette année sur les passages de 39 nuits. Cependant, ce chiffre est à relativiser car un important sous comptage a eu lieu la nuit du 22 mai avec 3420 anguilles non enregistrées par le compteur. En enlevant cet évènement, l'efficacité de cet appareil est alors portée à 96% (sur 97% des jours suivis).

# Système vidéo HIZKIA:

| Compteur vidéo     | Analyse | Piégeage |
|--------------------|---------|----------|
| HIZKIA             | vidéo   |          |
| Comptage           | 4328    | 3306     |
| manuel             |         |          |
| Comptage           | 4469    | 3294     |
| automatique        |         |          |
| % efficacité       | 103%    | 100%     |
| Efficacité globale | 102%    |          |

Figure 66 : Efficacité du compteur automatique vidéo en 2020.

En 2020, en plus des comptages automatiques, une caméra et un ordinateur dédiés, ont filmé et enregistré la totalité de la saison 24H/24H. Ceci, dans le but de vérifier les comptages automatiques sans perturber la migration. Cette stratégie peut permettre d'éviter les piégeages et manipulations qui concentrent les individus, augmentent le stress, les risques de pathologie et modifient le comportement nocturne de l'animal (lâchers diurne après manipulations).

La figure 66 rend compte de l'efficacité du compteur automatique vidéo. Celle-ci a été analysée au cours de 27 nuits par dénombrement après piégeage mais aussi grâce au

dépouillement de plusieurs plages horaires enregistrées en continu lors des nuits de fortes affluences.

Dans toutes ces conditions, ce système s'est révélé efficace, avec un taux d'erreur de 2% en moyenne.

A noter que le 29/06/20 entre 1:35:00 et 1:37:00, le dispositif vidéo a comptabilisé 342 anguilles. Cette même plage horaire a été visionnée par un technicien MIGADO qui a pu dénombrer 346 passages. Ce résultat de 99% pour le compteur automatique vidéo est tout à fait acceptable d'autant plus que ce faible taux d'erreur peut aussi bien incomber à l'opérateur.

Dans le même temps, le compteur à résistivité a enregistré 254 détections. Soit une efficacité brute (ou maximale) en condition extrême de (254/346) 76,4%. Le comptage automatique vidéo développé par HIZKIA apparait efficace pour des passages de l'ordre de 10000 anguilles par heure. Pour mémoire, au cours de l'année record de 2018, un pic équivalant à 15000 anguilles par heure a été enregistré durant la minute la plus intense.

#### - Estimation des tailles :

Les différents systèmes de comptage automatiques permettent à leur manière d'estimer la taille des individus dénombrés.

Le compteur à résistivité enregistre un signal électrique lors de chaque passage d'anguille. Celui-ci est fortement corrélé à la taille des poissons. Il permet grâce à une équation basée sur de nombreux tests antérieurs de faire apparaître la taille estimée de chaque individu.

Le logiciel de comptage vidéo suit quant à lui le déplacement de l'anguille en la mesurant X fois. Il moyenne ensuite un nombre de pixels par poisson. Le développeur a mis au point une équation en fonction de l'objectif de la caméra et de son positionnement par rapport au support de reptation des anguilles. Chaque animal est donc mesuré de façon automatique.

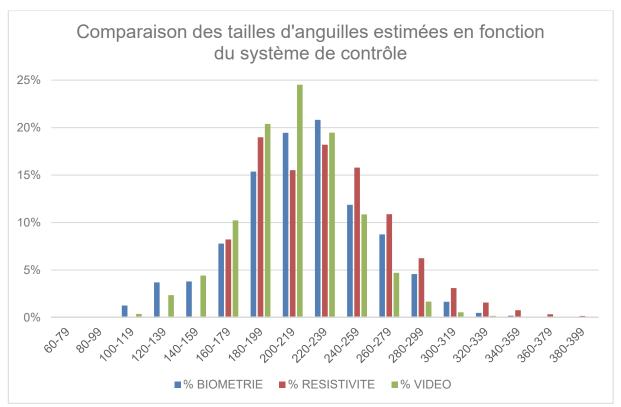



Figure 67 :Comparaison des tailles d'anguilles estimées en fonction du système de contrôle.

La figure 67 met en parallèle la répartition des tailles estimées par chaque système avec la référence obtenue par biométrie manuelle. Si les deux outils apparaissent globalement représentatifs, il ressort clairement que les tailles extrêmes sont mal appréhendées par le compteur à résistivité. Cette technique ne détecte pas ou très rarement les individus de taille inférieure à 160 mm alors qu'ils représentent près de 10% de la population. A contrario, les poissons les plus grands sont surestimés. L'estimation des tailles par analyse vidéo affiche une répartition plus proche de la réalité et représentative de la totalité des classes de tailles de la population.

# Entretien des systèmes de comptage :

Les deux outils utilisent des techniques différentes (électrique ou vidéo) mais sont placés dans un même environnement. Le développement de micro-algues sur les parois des supports est le paramètre ayant le plus d'impact sur l'efficacité. **Un nettoyage hebdomadaire similaire est nécessaire au bon fonctionnement de chaque outil.** 

Le compteur à résistivité nécessite un débit stable sans quoi la force des signaux enregistrés varie fortement (erreur sur les tailles) ainsi que le pourcentage de détection (déclenchement intempestif de faux positifs). Le compteur vidéo n'est pas sensible à ce paramètre.

### - Gestion des données :

Le compteur à résistivité nécessite un déchargement quotidien en période de migration. Chaque fichier produit doit être exporté manuellement via clé usb puis compilé. Ce fonctionnement nécessite la présence d'un technicien formé pour récupérer les données ou réinitialiser l'appareil après une erreur ou une saturation de la mémoire. De plus, les données

extraites nécessitent une analyse manuelle, ligne par ligne, afin de supprimer les faux positifs parfois très nombreux. Ce travail en plus d'être fastidieux limite la fiabilité de l'outil car il est soumis à l'interprétation de l'opérateur.

Le compteur vidéo est lui relié à internet. Les images enregistrées sont stockées puis analysées sur un serveur distant. Les données de la nuit sont disponibles chaque matin à partir de 7h sur une base de données accessible via internet grâce à un code sécurisé. Les données sont archivées et sauvegardées à un format adapté.

## - Moyens nécessaires au fonctionnement :

Les deux appareils nécessitent une alimentation électrique. Le système à résistivité ne présente aucun coût supplémentaire après l'achat du matériel.

Le système vidéo fonctionne avec une liaison internet de bonne qualité qui requiert un abonnement tout au long de la durée d'utilisation. Enfin, en sus de l'acquisition du matériel, une redevance annuelle est demandée par le fournisseur HIZKIA. Celle-ci inclue la formation des utilisateurs, une assistance permanente, le mise à jours des logiciels ainsi que le stockage des données.

|                             | Compteur vidéo HIZKIA | Compteur à résistivité |
|-----------------------------|-----------------------|------------------------|
|                             |                       |                        |
| Fiabilité de fonctionnement | 1                     | 0.5                    |
| Efficacité du comptage      | 1                     | 0.5                    |
| Estimation des tailles      | 1                     | 0.5                    |
| Entretien                   | 0                     | 0                      |
| Gestion des données         | 1                     | 0                      |
| BILAN                       | 4                     | 1.5                    |

Figure 68 : Bilan comparatif des systèmes de comptage automatiques.

La figure 68 présente un classement entre les deux outils. 1 point a été attribué lorsque le thème abordé donne satisfaction, 0.5 si des difficultés subsistent et 0 si le système de comptage n'apporte pas de solution efficace pour le thème évoqué. Cette liste n'est pas exhaustive mais ces critères apparaissent comme fondamentaux pour une gestion simple et durable des données caractérisant l'espèce sur le site de Golfech. Le compteur vidéo HIZKIA affiche un net avantage au niveau de l'acquisition et de la gestion de la donnée. A noter en plus que la société distributrice ainsi que le concepteur du compteur à résistivité ont cessé leur activité. Sa réparation sera désormais impossible.

Ainsi, l'utilisation du système vidéo semble désormais incontournable pour 1) fiabiliser de façon objective les données mais également pour permettre d'acquérir ces données en manipulant le moins possible les individus, ce qui, pour l'espèce est forcément un avantage majeur.

#### Conclusion

Pour la saison 2020, la rampe spécifique à anguilles a été mise en service le 30 avril.

La saison a été clôturée le 15 octobre après 15 jours sans passages

Cette année, ce sont 48416 anguilles qui ont été comptabilisées comme ayant franchi la rampe spécifique. D'après les études des années précédentes sur ce site, 10% d'anguilles auraient franchi l'obstacle par l'ascenseur à poissons : 4841 individus.

Ainsi, il a été estimé à **53257 le nombre d'anguilles ayant franchi l'ouvrage de Golfech en 2020** soit bien inférieur à la moyenne des années précédentes.

Le pic annuel est enregistré la nuit orageuse du 29 au 30 juin avec 15842 anguilles comptabilisées. La température affichait 24,1°C et le débit 191m3/s. Le lendemain, 8603 individus ont encore gravi la rampe. Ainsi, la moitié des passages de la saison (24445/48416 sur la rampe) ont été enregistrés durant ces deux nuits.

La taille moyenne des individus migrants est de 218,7 mm et la médiane 219,5mm. 89% des individus mesurent entre 16 et 30 cm et 9% ne dépassent pas les 16 cm.

Cette saison de migration des anguillettes a été impactée par la gestion du débit à l'étiage au niveau de Golfech. Une restitution de 10m3/s nécessaire au refroidissement de la centrale nucléaire a été délivrée par l'ascenseur à poissons, entrainant de longs arrêts au cours de l'été. Un mode de gestion adapté et concerté de cette situation doit absolument voir le jour avant la saison prochaine.

A noter qu'en période de migration, un protocole alterné de délivrance du débit d'attrait est mis en place. Il a donc été décidé afin de perturber le moins possible la migration des autres espèces et d'améliorer les franchissements d'anguilles de diminuer ce débit d'attrait 4 nuits par semaine de 22h à 5h du matin.

Dans ces conditions, 45977 anguilles ont emprunté la passe dont **43279 : soit plus de 94%**, les nuits ou le débit était diminué. Cette mesure s'avère donc très favorable.

Enfin, 2020 a permis à nouveau de comparer les systèmes de comptage automatiques existants. L'outil vidéo mis au point par HIZKIA présente de nombreux avantages par rapport au compteur à résistivité. Il sera utilisé en routine en 2021, comme dernière année de test, afin de vérifier 1) les tailles des individus par rapports aux tailles mesurées manuellement et 2) le comptage si toutefois un pic supérieur à 10000 inds/heure se présentait au niveau de la passe.

## 4.2.3 Migration de la lamproie

En 2020, 4 lamproies marines ont été contrôlées sur le site de Golfech! Le phénomène de homing n'ayant pas été démontré pour cette espèce, il est nécessaire d'avoir une vision globale de la migration de la lamproie, à l'échelle du bassin Garonne Dordogne.

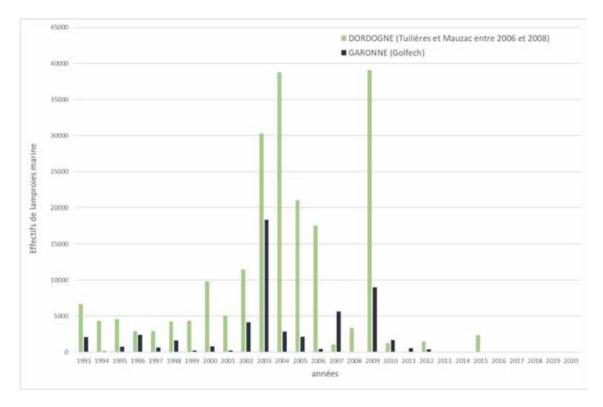



Figure 69 : Evolution annuelle des passages de lamproies à Golfech depuis 1993.

Comparaison avec Tuilières sur la Dordogne.

Cette espèce représente un intérêt patrimonial et économique majeur sur le bassin Gironde – Garonne – Dordogne. Ses effectifs ont globalement augmenté dans les années 2000, notamment sur le bassin de la Dordogne avec un stock reproducteur estimé à près de 50 000 individus en 2004 (station de contrôle de Tuilières + estimation du stock reproducteur en aval de Tuilières). En l'état actuel des connaissances, il est très difficile d'expliquer les variations des effectifs contrôlés pour cette espèce fortement exploitée par la pêcherie professionnelle et amateurs.

Depuis maintenant plus de 8 ans, les suivis de la migration, de la reproduction et des stades larvaires, sur les deux axes, convergent tous dans le même sens et décrivent une situation catastrophique de l'espèce sur le bassin avec un stock reproducteur estimé à quelques centaines d'individus sur le bassin Garonne Dordogne et un front de colonnisation très en aval sur les 2 axes Garonne et Dordogne. En juillet 2019, l'UICN a changé le statut de l'espèce en la faisant passer de « quasi menacée » à « en danger », les indicateurs sur d'autres bassins étant quasiment les mêmes.

En 2019, un suivi par radiopistage et tag acoustique dit « prédation » a été mené sur la Garonne et la Dordogne. 39 des 49 lamproies marines migrantes marquées (10 sur la Garonne, 39 sur la Dordogne) ont été consommées en un mois, et cette consommation s'est produite très rapidement après la libération de la lamproie, 50 % des lamproies relâchées ayant été consommées en moyenne 8 jours après le marquage. Ainsi, sur les 2 axes, 80 % des individus marqués ont été prédatés, ce qui apparait comme extrêmement important au regard de l'état actuel de la population. Cette étude a fait l'objet d'un article scientifique accepté dans la revue Nature, rédigé conjointement par MIGADO et le laboratoire ECOLAB de l'université Paul Sabatier de Toulouse: High predation of native sea lamprey during spawning migration, Boulêtreau et al, 2020.

Cependant, même si pour la première fois, ce facteur prédation a pu être chiffré, il est

nécessaire d'être prudent et de relativiser ce taux. En effet, les conditions hydrologiques pourraient également expliquer pourquoi la mortalité de la lamproie liée à la prédation était si élevée et rapide.

Lors du COGEPOMI pleinier du 5 février 2020, il a été proposé et validé le transport d'un échantillon de la population migrante sur 2 axes où la prédation par le silure serait potentiellement faible voire nulle : le Ciron sur le bassin de la Garonne (1000 individus) et la Dronne sur le bassin Dordogne (2000 individus). MIGADO sera chargé du suivi de cette population transportée afin de vérifier si la reproduction est effective et si l'émergence de larves de l'année au droit des nids observés est effective. Un suivi par radiopistage sera également mené sur cet échantillon transporté pour suivre le comportement des individus après transport.

Par ailleurs, MIGADO reconduira en 2021 un suivi par télémétrie d'un échantillon de la population migrante sur l'axe Dordogne et Garonne, individus équipés de tags prédation afin de vérifier les résultats obtenus en 2019.

En tout état de cause, il s'agit d'agir rapidement pour trouver des solutions à court et moyen terme pour permettre de retrouver une population de lamproies importante sur notre bassin.

## 4.2.4 Migration des grands salmonidés

## 4.2.4.1 Les suivis à Golfech

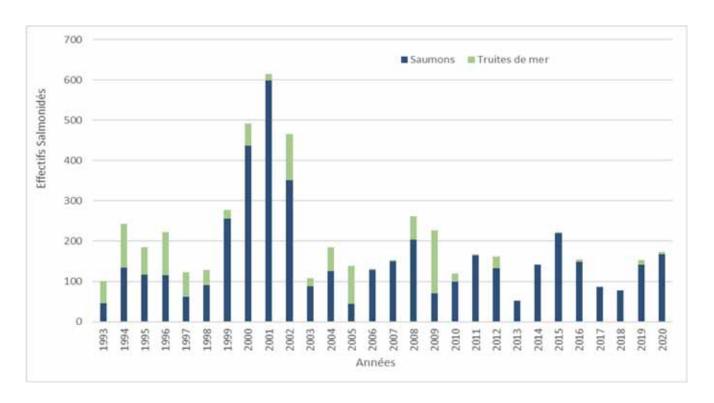



Figure 70 : Evolution des passages annuels de grands salmonidés à Golfech entre 1993 et 2020.

La Figure 70 indique que l'année 2020 montre une augmentation sensible du nombre de saumons atlantiques (168) par rapport aux 3 années précédentes, au-dessus de la moyenne enregistrée depuis 15 ans (122 individus) et le retour de quelques truites de mer (5), espèce quasiment absente à Golfech depuis près de 8 ans.

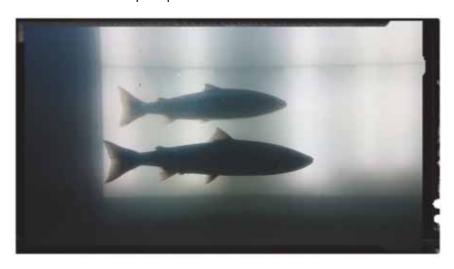



Figure 71 : Saumons observés à la vitre de contrôle de Golfech

## Le saumon atlantique

| Année             | Janvier | Février | Mars | Avril | Mai | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | Total général |
|-------------------|---------|---------|------|-------|-----|------|---------|------|-----------|---------|----------|----------|---------------|
| 1993              | 0       | 1       | 1    | 1     | 0   | 3    | 5       | 1    | 0         | 16      | 13       | 5        | 46            |
| 1994              | 4       | 0       | 0    | 0     | 0   | 28   | 42      | 0    | 13        | 29      | 10       | 8        | 134           |
| 1995              | 1       | 0       | 0    | 6     | 23  | 60   | 12      | 0    | 0         | 8       | 3        | 4        | 117           |
| 1996              | 0       | 2       | 0    | 17    | 40  | 24   | 19      | 0    | 0         | 10      | 3        | 0        | 115           |
| 1997              | 1       | 0       | 0    | 10    | 4   | 4    | 11      | 0    | 0         | 8       | 18       | 6        | 62            |
| 1998              | 0       | 0       | 0    | 9     | 24  | 20   | 7       | 0    | 1         | 10      | 2        | 17       | 90            |
| 1999              | 4       | 0       | 9    | 11    | 11  | 138  | 25      | 0    | 1         | 14      | 12       | 30       | 255           |
| 2000              | 6       | 6       | 11   | 29    | 26  | 157  | 100     | 0    | 1         | 29      | 27       | 44       | 436           |
| 2001              | 3       | 5       | 12   | 17    | 14  | 263  | 230     | 1    | 6         | 13      | 19       | 16       | 599           |
| 2002              | 3       | 1       | 9    | 13    | 17  | 99   | 71      | 14   | 10        | 46      | 29       | 39       | 351           |
| 2003              | 6       | 0       | 2    | 21    | 48  | 10   | 0       | 0    | 0         | 0       | 0        | 1        | 88            |
| 2004              | 0       | 0       | 6    | 19    | 20  | 37   | 41      | 0    | 0         | 0       | 1        | 2        | 126           |
| 2005              | 0       | 0       | 8    | 12    | 10  | 11   | 2       | 0    | 1         | 0       | 0        | 1        | 45            |
| 2006              | 2       | 0       | 14   | 45    | 47  | 20   | 0       | 0    | 0         | 0       | 0        | 0        | 128           |
| 2007              | 2       | 0       | 12   | 37    | 29  | 26   | 31      | 1    | 2         | 3       | 7        | 0        | 150           |
| 2008              | 2       | 4       | 21   | 31    | 51  | 40   | 49      | 1    | 1         | 4       | 0        | 0        | 204           |
| 2009              | 1       | 0       | 14   | 15    | 14  | 23   | 1       | 0    | 0         | 0       | 1        | 2        | 71            |
| 2010              | 1       | 3       | 9    | 6     | 21  | 36   | 22      | 2    | 0         | 0       | 0        | 0        | 100           |
| 2011              | 0       | 3       | 24   | 75    | 33  | 22   | 5       | 3    | 0         | 0       | 0        | 0        | 165           |
| 2012              | 0       | 0       | 15   | 34    | 18  | 56   | 10      | 0    | 0         | 0       | 0        | 0        | 133           |
| 2013              | 0       | 0       | 17   | 22    | 8   | 1    | 3       | 0    | 0         | 0       | 0        | 0        | 51            |
| 2014              | 0       | 2       | 18   | 30    | 82  | 4    | 5       | 0    | 0         | 0       | 0        | 1        | 142           |
| 2015              | 0       | 16      | 51   | 83    | 51  | 18   | 0       | 0    | 0         | 0       | 0        | 0        | 219           |
| 2016              | 0       | 0       | 14   | 59    | 29  | 15   | 32      | 0    | 0         | 0       | 0        | 0        | 149           |
| 2017              | 0       | 2       | 6    | 55    | 22  | 1    | 0       | 0    | 0         | 0       | 0        | 0        | 86            |
| 2018              | 0       | 0       | 20   | 17    | 2   | 11   | 27      | 0    | 0         | 0       | 0        | 0        | 77            |
| 2019              | 0       | 3       | 29   | 58    | 39  | 11   | 1       | 0    | 0         | 0       | 0        | 0        | 141           |
| 2020              | 0       | 3       | 14   | 113   | 13  | 21   | 4       | 0    | 0         | 0       | 0        | 0        | 168           |
| Moyenne 1993-2019 | 1       | 2       | 12   | 27    | 25  | 42   | 28      | 1    | 1         | 7       | 5        | 7        | 159           |
| Moyenne 2003-2019 | 1       | 2       | 16   | 36    | 31  | 20   | 13      | 0    | 0         | 0       | 1        | 0        | 122           |

Figure 72 : Répartition mensuelle des saumons contrôlés à Golfech entre 1993 et 2020

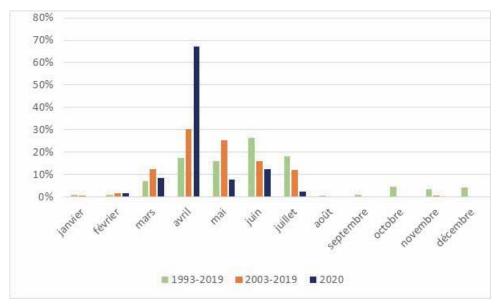



Figure 73 : Comparaison entre la répartition mensuelle des saumons contrôlés à Golfech en 2020 et la moyenne des observations sur la période 1993-2002 et sur la période 2003 – 2019

Les figures 72 et 73 montrent que la migration de 2020 est marquée par des passages très forts et inédits pendant le mois d'avril avec 68 % des individus recensés contre 30 % sur la période 2003-2019. Par contre les passages au mois de mai sont très faibles, à mettre en relation avec les arrêts de l'ascenseur du fait de 2 crues successives fin avril (22/04) et mi mai (11 au 16 mai). La figure 73 montre que depuis 2003 la quasi-totalité de la migration des saumons se fait avant la période estivale avec des individus âgés de 2 voire 3 hivers de mer. Les castillons (1 hiver de mer) sont désormais pratiquement absents des cohortes observées

sur ce site.

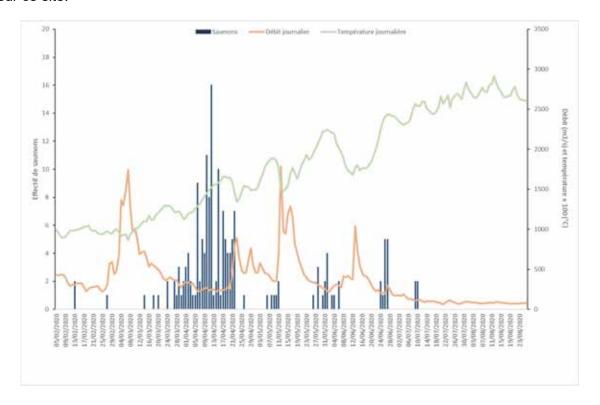



Figure 74 : Evolution des passages journaliers de saumons à Golfech en 2020 en fonction du débit et de la température.

Les deux premiers individus ont été observé le 13 février pour une température de l'eau avoisinant les 10°C. La crue du mois de mars (pic à 1700 m3/s) a obligé d'arrêter l'ascenseur à poissons pendant 7 jours (du 5 au 12 mars). La figure 74 montre qu'à la remise en service de l'ascenseur à poissons, dès lors que les débits de la Garonne ont été inférieurs à 500 m3/s, les passages ont été réguliers voire se sont intensifiés avec un pic de 16 individus enregistré le 12 avril. Malheureusement, le coup d'eau du 22 avril (900 m3/s) a fortement perturbé le rythme de la migration avec un arrêt brutal des passages et une reprise de l'activité très faible pendant les mois de mai et juin, reprise stoppée à chaque fois par 2 nouveaux arrêts de l'ascenseur du fait des crues de mai et juin. Il est difficile de pronostiquer la perte d'individus engendrée par ces arrêts de l'ascenseur à poissons mais cette année 2020, qui s'annonçait comme record pour l'espèce au regard des passages d'avril, ne s'avère guère différente des années précédentes même si les effectifs sont légèrement supérieurs à la moyenne des 15 dernières années.

#### Caractérisation de la population

Les 168 saumons comptabilisés ont, comme depuis plusieurs années, fait l'objet d'une estimation de taille dont la précision a été évaluée à  $\pm 2$  cm contre  $\pm 5$  cm les années précédentes. En effet, depuis 2002, un grand nombre de poissons ont été mesurés pendant les opérations de piégeage et ainsi il a été possible de réajuster le coefficient multiplicateur qui permet de transformer une taille mesurée à l'écran de l'ordinateur en taille réelle.

Les tailles des saumons observés à la vitre de contrôle ont varié en 2020 de 51 cm à 93 cm avec une moyenne de 75 cm (Figure 77).

| Année             | Min de taille | Max de taille | Moyenne de taille |
|-------------------|---------------|---------------|-------------------|
| 1993              | 60            | 90            | 73                |
| 1994              | 50            | 85            | 68                |
| 1995              | 48            | 83            | 66                |
| 1996              | 52            | 96            | 72                |
| 1997              | 50            | 88            | 67                |
| 1998              | 51            | 100           | 70                |
| 1999              | 47            | 99            | 64                |
| 2000              | 45            | 89            | 64                |
| 2001              | 42            | 95            | 59                |
| 2002              | 48            | 91            | 65                |
| 2003              | 55            | 103           | 78                |
| 2004              | 55            | 104           | 76                |
| 2005              | 55            | 93            | 77                |
| 2006              | 66            | 95            | 79                |
| 2007              | 53            | 101           | 77                |
| 2008              | 51            | 99            | 73                |
| 2009              | 51            | 97            | 77                |
| 2010              | 59            | 105           | 79                |
| 2011              | 62            | 102           | 84                |
| 2012              | 57            | 99            | 78                |
| 2013              | 62            | 101           | 81                |
| 2014              | 56            | 101           | 78                |
| 2015              | 53            | 102           | 78                |
| 2016              | 49            | 102           | 70                |
| 2017              | 63            | 95            | 77                |
| 2018              | 50            | 91            | 70                |
| 2019              | 56            | 100           | 79                |
| 2020              | 50            | 93            | 75                |
| Moyenne 1993-2002 | 49            | 92            | 67                |
| Moyenne 2003-2019 | 56            | 99            | 77                |

Figure 75 : Taille minimale, moyenne et maximale des saumons observés à Golfech entre 1993 et 2020

Chez les saumons, les classes de taille les plus représentées au cours de cette saison 2020 sont les classes 70 – 75 cm et 75 – 80 cm qui correspondent respectivement à 42 % et 22 % des effectifs (Figure 76).



Figure 76 : Comparaison des histogrammes des classes de taille moyennes de saumons à Golfech entre 1993 – 2002, 2003-2019 et celles observées en 2020

Si l'on se réfère au rapport du CSP sur le saumon atlantique en France en 1993 (J.P. PORCHER, mars 1994) qui établit une relation entre la taille des poissons et l'âge en mer, les saumons dont la taille est inférieure à 75 cm auraient 1 hiver de mer, ceux dont la taille est supérieure à 75 cm auraient plusieurs hivers de mer (PHM). Cependant, il apparaît, après lecture d'écailles, que des individus de taille inférieure à 75 cm mais migrant en début de saison, peuvent être des PHM. Ainsi, pour distinguer l'âge des saumons par rapport à la taille, nous avons pris en compte les données de l'association MIGRADOUR (David Barracou, com pers) qui a déterminé l'âge de 6 600 saumons par lecture d'écailles et attribué une probabilité d'appartenance à l'une des 2 catégories (castillons / PHM) selon la taille des individus, indépendamment de sa période de migration. Le tableau suivant reprend ces données (Figure 77) :

|            | <70    | 70-75 | 75-80 | >80  |
|------------|--------|-------|-------|------|
| Castillons | 99.64% | 76%   | 6%    | 0%   |
| PHM        | 0.36%  | 24%   | 94%   | 100% |

Figure 77 : Répartition entre castillons et PHM selon différentes classes de tailles sur le bassin de l'Adour (MIGRADOUR, com pers).

En reprenant ces éléments et en l'appliquant aux 4 448 saumons ayant franchi Golfech depuis 1993, nous obtenons la répartition suivante (Figure 78) :

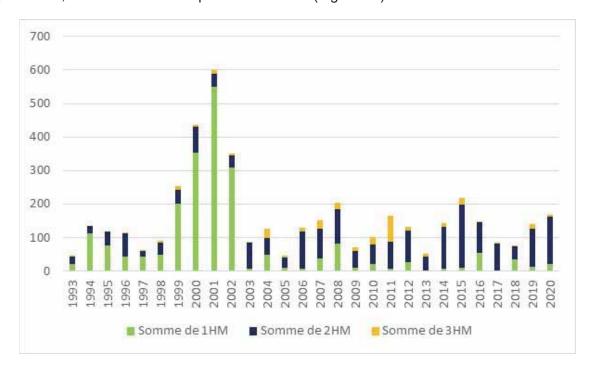



Figure 78 : Répartition des 1 hiver de mer (1 HM, castillons), 2HM et 3 HM (plusieurs hivers de mer) à Golfech entre 1993 et 2020

Globalement, sur les 4448 saumons contrôlés et mesurés précisément (à +/- 5cm jusqu'en 2002 et +/- 2 cm à partir de 2003), 50 % seraient des individus ayant passé 1 seul hiver en mer. De plus, il est important de remarquer que l'augmentation du stock entre 1999 et 2002 est essentiellement due à l'augmentation du stock de castillons.

Sur ce graphique, deux périodes se dégagent nettement : entre 1993 et 2002, les

effectifs de saumons sont essentiellement des castillons (80 % de 1HM). Ces individus de petite taille (< 75 cm) sont observés en fin de printemps – début d'été lorsque les conditions hydro-climatiques de la Garonne deviennent moins propices à une bonne migration de montaison (hausse des températures et chute des débits).

Depuis 2003, la proportion entre 1HM et PHM s'est inversée avec très peu de castillons mais une augmentation constante de PHM (pluri hivers de mer), certainement à mettre en relation avec les conditions hydro-climatiques de la Garonne mais pas seulement puisque, certaines années où de bonnes conditions étaient réunies (2010, 2013), il n'a pas été observé de bonnes remontées de castillons. Sur d'autres bassins, notamment l'Adour, ce phénomène est également observé mais dans une moindre mesure et il apparaitrait que les castillons migreraient plus tardivement dans la saison (juillet – août), période non favorable à la migration sur notre bassin du fait des températures élevées rencontrées en été. Tout l'enjeu sur notre bassin est de permettre aux individus de migrer le plus rapidement possible vers le haut bassin afin qu'ils rencontrent des conditions de vie compatibles avec leur survie.

**En 2020**, sur les 168 saumons contrôlés à Golfech, 21 individus, ont été classés 1 HM, pour une taille moyenne de 65 cm. Parmi les 147 autres saumons, 6 ont été classés 3 HM, passés au mois de mars et avril avec respectivement une taille moyenne de 89.9 cm, le reste des effectifs (141) ayant 2 hivers de mer (moyenne de 77 cm).

Par ailleurs, depuis 2008, une étude génétique permettant d'évaluer la contribution des actions de repeuplement et la part de la reproduction naturelle dans le retour des géniteurs est en cours sur le bassin Garonne Dordogne. Dans ce cadre, un suivi génétique est effectué sur l'ensemble des géniteurs des sites de production d'œufs depuis 2008. De plus, des piégeages spécifiques avec prélèvements de tissus sont effectués sur les sites de piégeage de Golfech et Tuilières afin de caractériser le génotype de ces individus et de connaitre ainsi leur origine naturelle ou artificielle, leur lieu d'élevage et les sites de déversement...

## Stratégie et résultats de piégeage des saumons

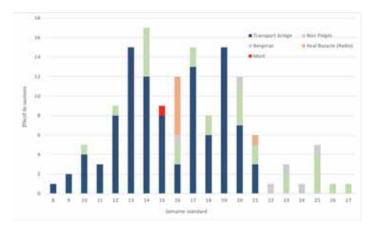
Suite à l'évaluation du programme saumon par le Groupe Migrateurs Garonne pendant l'année 2018 et à la réunion de restitution de cette évaluation du 26 septembre 2018, il a été validé que ce programme avait une finalité patrimoniale sur le territoire de l'Ariège avec pour objectif d'aboutir rapidement à une population acclimatée constituée d'un effectif viable génétiquement, le nombre de géniteurs optimum devant être précisé ultérieurement.

Pour ce faire, dans une première phase il s'agit :

- d'augmenter sensiblement la reproduction naturelle en concentrant les géniteurs sur l'Ariège avec un transfert d'un maximum de géniteurs depuis Golfech dès 2019.
- de réaliser une étude pour préciser les conditions de migrations sur la Garonne moyenne entre Golfech et le Bazacle en mesurant l'efficacité des dispositifs de franchissement.

En 2019, 100 saumons sur 141 avaient été transportés sur l'Ariège et 6 individus avaient été équipés d'émetteurs et transportés au droit du Bazacle pour commencer à se familiariser avec l'étude radiopistage.

Ces piégeages devaient reprendre intensément en 2020 mais malheureusement, du fait de la crise sanitaire liée au COVID 19, les opérations ont été perturbées avec mise au


chômage partiel d'une partie du personnel (CDD) entre le 1<sup>er</sup> avril et le 11 mai du fait du confinement strict imposé par le gouvernement.

Ainsi, les transports sur l'Ariège n'ont pu réellement débuter qu'après le 11 mai (1 saumon transporté au mois de mars), alors même que la migration a été perturbée par les crues et les arrêts de l'ascenseur à poissons après cette date.

Pour être transportés, les saumons sont anesthésiés avec de la tricaïne à 10 % délivrée sous ordonnance par un vétérinaire. Le dosage est de 18 ml pour 40 L d'eau de la Garonne. Pendant l'anesthésie, une biométrie est effectuée sur chaque saumon (taille, longueur mâchoire), un état sanitaire est évalué par le technicien avec pour objectif de décrire précisément l'état général du saumon et les éventuelles blessures en les localisant. Une base de données est ainsi créée afin de normaliser cette prise de données. Une photo de chaque individu est réalisée et stockée.

A noter que de nombreuses réparations des grilles et tôles présentes dans le canal de transfert ont été faites pendant l'entretien annuel (hiver 2019 2020). Ainsi, les blessures de saumons ont été bien moins nombreuses cette année et surtout classées bien moins graves, même si cet avis reste subjectif. MIGADO travaille actuellement à l'homogénéisation des prises de données de l'état sanitaire des poissons et collabore activement avec d'autres associations migrateurs pour partager les retours d'expérience.

Par ailleurs, des prélèvements d'écailles et de tissus (bouts de nageoires) sont effectués. Ces éléments seront analysés par les équipes en charge de la génétique des saumons sur notre bassin (MIGADO, Labogéna) afin d'évaluer la réussite du programme saumon. Enfin, une marque de type spaghetti est apposée sur la nageoire (dorsale ou adipeuse). Chaque marque possède son identifiant propre et pourra, en cas de capture accidentelle sur l'Ariège, permettre d'identifier le poisson et donner ainsi des informations sur d'éventuels déplacements d'individus.



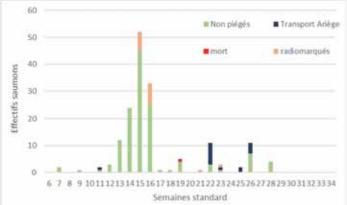



Figure 79 : Comparaison des passages hebdomadaires des saumons à Golfech et destination des individus après piégeage en 2019 et 2020.

La figure 79 montre la différence de « destination » des saumons entre 2019, année optimale de piégeage et 2020, année perturbée par la crise sanitaire puis les crues.

Sur les 168 saumons contrôlés à Golfech :

- 16 ont été transportés sur l'Ariège, soit 10 % des individus. Ce mauvais taux de capture est à mettre en relation avec les piégeages tardifs (COVID 19) et la forte proportion de saumons passés au mois de mars et avril (136/168).
- 18 individus ont été équipés d'émetteurs radio et prédation (étude radiopistage) et relaché au droit du piége dans le canal de transfert.
- 1 saumon est mort prédaté par un silure régurgité lors de la vidange du lendemain
- 132 saumons sont passés par l'ascenseur à poissons sans être manipulés.

Sur les 32 saumons passés après le 11 mai, 15 ont été transportés sur l'Ariège et 3 équipés d'émetteurs pour l'étude radiopistage. Les autres individus (14) sont soit passés pendant la nuit (2) soit fin juin et début juillet lorsque la température de l'eau était supérieure à 23°C. Les plages horaires de piégeages, de 5 h à 22 h en semaine et de 8 h à 20 h le WE semblent adaptées aux passages des saumons.

A noter qu'en 2020, aucun saumon n'a été transporté à Bergerac depuis Golfech.

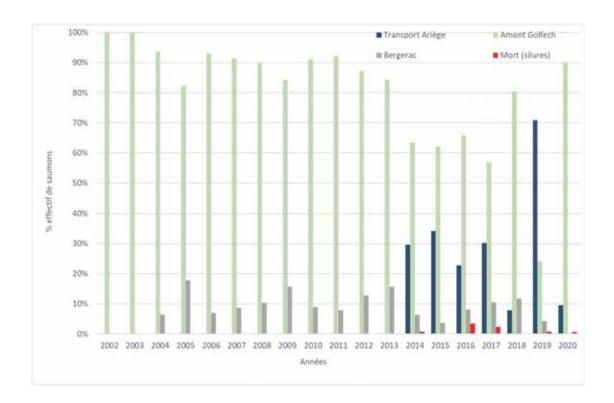



Figure 80 : Evolution des piégeages de saumons depuis 2002 (date de fabrication du piège) et destinations des individus capturés.



Figure 81 : Saumon déversé sur l'Ariège

## 4.2.4.2 Les suivis au Bazacle

Le suivi au niveau du Bazacle permet de calculer le taux de transfert des saumons entre Golfech et l'amont du Bazacle. En considérant, d'après l'étude de radiopistage du GHAAPPE (Croze, 2002 – 2006), que le franchissement du Ramier et/ou de la Cavaletade n'est pas vraiment problématique (87 % d'efficacité au Ramier), si bien sûr les conditions n'ont pas évolué, alors les saumons franchissant le Bazacle sont certainement des individus qui auront la possibilité soit d'être capturés à Carbonne puis transportés sur les zones de reproduction, soit de migrer sur l'Ariège où les zones favorables sont nombreuses.

| Année             | Janvier | Février | Mars | Avril | Mai | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | Total général |
|-------------------|---------|---------|------|-------|-----|------|---------|------|-----------|---------|----------|----------|---------------|
| 1993              | 0       | 0       | 0    | 0     | 0   | 0    | 0       | 0    | 0         | 15      | 4        | 2        | 21            |
| 1994              | 0       | 0       | 0    | 0     | 0   | 10   | 21      | 0    | 3         | 13      | 8        | 0        | 55            |
| 1995              | 0       | 0       | 0    | 0     | 12  | 12   | 9       | 0    | 1         | 2       | 1        | 0        | 37            |
| 1996              | . 1     | 0       | 0    | . 1   | 19  | 21   | 13      | 0    | 0         | 5       | 1        | 0        | 61            |
| 1997              | 0       | 0       | 0    | 4     | 2   | 0    | 0       | 0    | 0         | 1       | 2        | 1        | 10            |
| 1998              | 1       | 0       | 0    | 4     | 8   | 17   | 1       | 0    | 1         | 3       | 1        | 1        | 37            |
| 1999              | 0       | 0       | 1    | 0     | 3   | 23   | 8       | 0    | 1         | 2       | 2        | 0        | 40            |
| 2000              | 0       | 0       | 1    | -4    | 12  | 8    | 32      | 3    | 2         | 8       | 3        | 0        | 73            |
| 2001              | 0       | 0       | 1    | 10    | 11  | 27   | 48      | 0    | 6         | 9       | 9        | 2        | 123           |
| 2002              | 0       | 2       | 4    | 9     | 6   | 24   | 22      | 8    | 11        | 24      | 8        | 3        | 121           |
| 2003              | 4       | 0       | 0    | 2     | 12  | 19   | 0       | 0    | 0         | 0       | 1        | 0        | 38            |
| 2004              | 0       | 0       | 0    | 1     | 4   | 11   | 16      | 0    | 0         | 1       | 0        | 0        | 33            |
| 2005              | 0       | 0       | 0    | 0     | 4   | 4    | 0       | 0    | 1         | 0       | 1        | 0        | 10            |
| 2006              | 0       | 0       | 0    | 13    | 21  | 13   | 0       | 0    | 0         | 0       | 0        | 0        | 47            |
| 2007              | 0       | 0       | 2    | 6     | 7   | 4    | 6       | 1    | 0         | 1       | 3        | 1        | 31            |
| 2008              | 0       | 0       | 4    | 13    | 26  | 9    | 14      | 0    | 2         | 3       | 2        | 0        | 73            |
| 2009              | 0       | 0       | 0    | 9     | 3   | 8    | 1       | 0    | 0         | 0       | 0        | 1        | 22            |
| 2010              | 0       | 0       | 2    | 7     | 1   | 8    | 4       | 1    | 0         | 0       | 0        | 1        | 24            |
| 2011              | 0       | 0       | 0    | 12    | 18  | 17   | 2       | 0    | 0         | 1       | 0        | 0        | 50            |
| 2012              | 0       | 0       | 1    | 5     | 2   | 7    | 5       | 0    | 0         | 1       | 0        | 0        | 21            |
| 2013              | 0       | 0       | 1    | 5     | 6   | 0    | 1       | 0    | 0         | 0       | 0        | 0        | 13            |
| 2014              | 0       | 0       | 0    | 0     | 9   | 3    | 2       | 0    | 0         | 0       | 0        | 0        | 14            |
| 2015              | 0       | 0       | 0    | 17    | 22  | 7    | 0       | 0    | 0         | 0       | 0        | 0        | 46            |
| 2016              | 0       | 0       | 0    | 9     | 20  | 1    | 6       | 0    | 0         | 1       | 0        | 0        | 37            |
| 2017              | 0       | 0       | 1    | 6     | 7   | 0    | 0       | 0    | 0         | 0       | 0        | 0        | 14            |
| 2018              | 0       | 0       | 1    | 3     | 2   | 1    | 1       | 0    | 0         | 0       | 0        | 0        | 8             |
| 2019              | 0       | 0       | 1    | 4     | 1   | 2    | 0       | 0    | 0         | 0       | 0        | 0        | 8             |
| 2020              | 0       | 1       | 0    | 42    | 10  | 7    | 0       | 0    | 0         | 0       | 0        | 0        | 60            |
| Moyenne 1993-2019 | 0       | 0       | 1    | 5     | 9   | 9    | 8       | 0    | 1         | 3       | 2        | 0        | 40            |
| Moyenne 2003-2019 | 0       | 0       | 1    | 7     | 10  | 7    | 3       | 0    | 0         | 0       | 0        | 0        | 29            |

Figure 82 : Répartition mensuelle des saumons contrôlés au Bazacle entre 1993 et 2020





Figure 83 : Saumons contrôlés au Bazacle en 2020

En 2020, 60 saumons ont été contrôlés au Bazacle sur les 151 qui potentiellement pouvaient se présenter sur le site, c'est-à-dire non piégés et transportés depuis Golfech et l'individus prédaté par un silure dans le canal de transfert. Ces effectifs sont le 2eme plus important enregistré au Bazacle depuis 2003 !

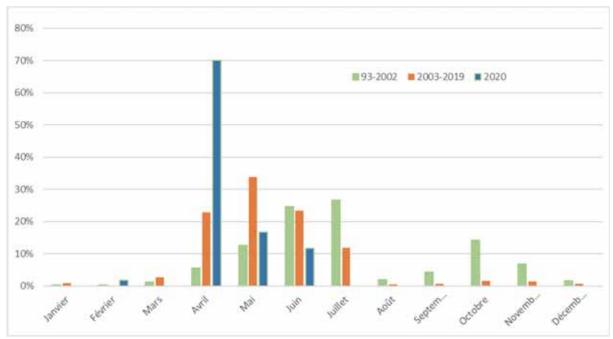



Figure 84 : Comparaison entre la répartition mensuelle des saumons contrôlés au Bazacle en 2020 et la moyenne des observations sur la période 1993-2002 et sur la période 2003 – 2019

La figure 84 montre que la majorité des individus (70%) a été observée au mois d'avril alors même que ce mois ne représente que 22 % des passages sur la période 2003 – 2019 ! Comme à Golfech, les crues du 22 avril et du 11 mai, occasionnant des arrêts de la passe à poissons, ont perturbé la migration en mai et juin.

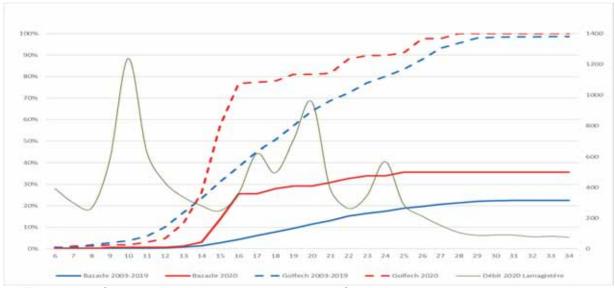



Figure 85 : Comparaison des passages cumulés de saumons par semaine sur les stations de Golfech et du Bazacle en 2020 et la moyenne des observations sur la période 2003 – 2019

La figure 85, qui compare les effectifs cumulés à Golfech et au Bazacle montre que les migrations sur les 2 sites ont le même rythme avec un décalage de 1,5 semaine, laissant présager un très bon transfert entre les 2 sites (courbes rouges) bien supérieur à celui observé en moyenne au mois d'avril sur la période 2003 - 2019 (courbes bleues) et ce jusqu'à la crue du 22 avril. Ensuite, il est observé 3 très légers rebonds dans le passage des saumons après une période relativement longue de non franchissement sur les 2 sites. Ce graphe montre 1) que la migration en mars avril a été particulièrement favorable et qu'à contrario, le franchissement sur les 2 sites, voire la progression sur le tronçon Malause – Bazacle, a été particulièrement dégradé, alors même que les valeurs observées de débits n'ont pas été très élevées (2 à 3 fois le module).

| Années | Somme de<br>1hm<br>Golfech | 1HM sans<br>les<br>individus<br>transportés<br>(Ariège et<br>Bergerac) +<br>mort | Somme<br>PHM<br>Golfech | PHM sans<br>les<br>individus<br>transportés<br>(Ariège et<br>Bergerac) +<br>mort | Somme de<br>1HM<br>Bazacle | Somme de<br>PHM<br>Bazacle | Taux de<br>Transfert<br>1HM | Taux de<br>Transfert<br>PHM | taux de<br>transfert<br>Global |
|--------|----------------------------|----------------------------------------------------------------------------------|-------------------------|----------------------------------------------------------------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|--------------------------------|
| 1994   | 112                        | 112                                                                              | 22                      | 22                                                                               | 41                         | 14                         | 37%                         | 63,64%                      | 41%                            |
| 1995   | 76                         | 76                                                                               | 41                      | 41                                                                               | 11                         | 26                         | 14%                         | 63,41%                      | 32%                            |
| 1996   | 42                         | 42                                                                               | 73                      | 73                                                                               | 22                         | 39                         | 52%                         | 53,42%                      | 53%                            |
| 1997   | 42                         | 42                                                                               | 20                      | 20                                                                               | 4                          | 6                          | 10%                         | 30,00%                      | 16%                            |
| 1998   | 49                         | 49                                                                               | 41                      | 41                                                                               | 16                         | 21                         | 33%                         | 51,22%                      | 41%                            |
| 1999   | 202                        | 202                                                                              | 53                      | 53                                                                               | 29                         | 11                         | 14%                         | 20,75%                      | 16%                            |
| 2000   | 354                        | 354                                                                              | 82                      | 82                                                                               | 46                         | 27                         | 13%                         | 32,93%                      | 17%                            |
| 2001   | 550                        | 550                                                                              | 49                      | 49                                                                               | 89                         | 34                         | 16%                         | 69,39%                      | 21%                            |
| 2002   | 309                        | 309                                                                              | 42                      | 42                                                                               | 80                         | 41                         | 26%                         | 97,62%                      | 34%                            |
| 2003   | 7                          | 7                                                                                | 81                      | 81                                                                               | 5                          | 33                         | 71%                         | 40,74%                      | 43%                            |
| 2004   | 50                         | 49                                                                               | 76                      | 69                                                                               | 16                         | 17                         | 33%                         | 24,64%                      | 28%                            |
| 2005   | 10                         | 9                                                                                | 35                      | 28                                                                               | 2                          | 8                          | 22%                         | 28,57%                      | 27%                            |
| 2006   | 6                          | 4                                                                                | 122                     | 115                                                                              | 0                          | 47                         | 0%                          | 40,87%                      | 39%                            |
| 2007   | 37                         | 35                                                                               | 113                     | 102                                                                              | 3                          | 28                         | 9%                          | 27,45%                      | 23%                            |
| 2008   | 82                         | 75                                                                               | 122                     | 108                                                                              | 16                         | 57                         | 21%                         | 52,78%                      | 40%                            |
| 2009   | 11                         | 11                                                                               | 59                      | 48                                                                               | 1                          | 21                         | 9%                          | 43,75%                      | 37%                            |
| 2010   | 22                         | 21                                                                               | 79                      | 71                                                                               | 3                          | 21                         | 14%                         | 29,58%                      | 26%                            |
| 2011   | 6                          | 6                                                                                | 159                     | 146                                                                              | 0                          | 50                         | 0%                          | 34,25%                      | 33%                            |
| 2012   | 27                         | 26                                                                               | 106                     | 90                                                                               | 5                          | 16                         | 19%                         | 17,78%                      | 18%                            |
| 2013   | 2                          | 2                                                                                | 49                      | 41                                                                               | 0                          | 13                         | 0%                          | 31,71%                      | 30%                            |
| 2014   | 8                          | 8                                                                                | 134                     | 82                                                                               | 2                          | 12                         | 25%                         | 14,63%                      | 16%                            |
| 2015   | 10                         | 4                                                                                | 209                     | 132                                                                              | 0                          | 46                         | 0%                          | 34,85%                      | 34%                            |
| 2016   | 53                         | 40                                                                               | 96                      | 44                                                                               | 7                          | 30                         | 18%                         | 68,18%                      | 44%                            |
| 2017   | 1                          | 1                                                                                | 85                      | 44                                                                               | 0                          | 14                         | 0%                          | 32%                         | 31%                            |
| 2018   | 36                         | 31                                                                               | 41                      | 31                                                                               | 1                          | 7                          | 3%                          | 23%                         | 13%                            |
| 2019   | 11                         | 8                                                                                | 130                     | 26                                                                               | 0                          | 8                          | 0%                          | 31%                         | 24%                            |
| 2020   | 21                         | 12                                                                               | 147                     | 139                                                                              | 0                          | 60                         | 0%                          | 43%                         | 40%                            |
|        | "                          |                                                                                  |                         |                                                                                  | 1994-2020                  |                            | 17%                         | 41%                         | 30%                            |
|        |                            |                                                                                  |                         |                                                                                  | 1994 - 2002                | Moyenne:                   | 24%                         | 54%                         | 30%                            |
|        |                            |                                                                                  |                         | i i                                                                              | 2003 - 2020                |                            | 14%                         | 34%                         | 30%                            |

Figure 86 : Evolution du taux de transfert des saumons sur la Garonne entre Golfech et le Bazacle entre 1994 et 2020.

La Figure 86 montre l'évolution du taux de transfert des saumons entre Golfech et l'amont du Bazacle. Le taux moyen varie entre 13 % et 53 % avec une moyenne de 30 % sur la période 1994 – 2020 et 2003 - 2020. En 2020, ce taux est de 40 %, soit supérieur de 10% à la moyenne. Cependant, il est important de distinguer les individus selon leur âge de mer. En effet, on observe que les 2 voire 3 hivers de mer, qui migrent plus tôt dans la saison, ont un léger meilleur taux de transfert avec 41 % sur la période 1994 – 2020 et 43 % pour l'année 2020. Ces taux ne progressent pas réellement malgré des améliorations constantes faites au niveau des dispositifs de franchissement.

La deuxième entrée de l'ascenseur à poissons de Golfech, mise en service en 2012

#### avait 2 objectifs:

- Permettre aux migrateurs de trouver plus facilement l'entrée du système de franchissement et par conséquent perdre potentiellement moins d'énergie pour optimiser leur progression en amont de l'ouvrage
- Augmenter le nombre d'individus qui auraient des difficultés à trouver l'entrée historique de l'ascenseur à poissons.

Le dégrilleur installé au niveau du débit d'attrait de la passe à poissons en 2012 permet de délivrer le débit complémentaire tel que préconisé par les concepteurs.

Ainsi, indépendamment des incertitudes soulevées par l'étude de Croze (2002 – 2006) sur les difficultés potentielles constatées sur le tronçon Malause- aval Bazacle, il aurait été normal voire logique de constater une amélioration du taux de transfert à partir de 2013 d'autant plus que les saumons migrant sur la Garonne depuis près de 15 ans sont essentiellement des PHM, individus présents entre février et juin, période où les débits de la Garonne sont particulièrement favorables à la migration. Or, aucune amélioration ne se dessine ces dernières années, avec un taux de transfert global qui stagne autour de 30 %. Différentes études au niveau de Golfech, ont montré que la présence du silure au droit du système de franchissement de Golfech pouvait s'avérer très préjudiciable à la migration de cette espèce avec en 2016 environ 30 % des saumons prédatés dans le canal de transfert entre fin avril et fin mai (voire chapitre silure). Une gestion de cette espèce est réalisée tous les ans depuis 2017, limitant fortement la prédation mais là encore, aucun impact sur le transfert des saumons ne se fait réellement sentir. Il est convenu que les problèmes pouvant impacter la migration du saumon sur la Garonne est multifactorielle (débits, températures, prédation, pollution, habitat...) mais aucune étude n'a pu hiérarchiser ces facteurs de risques afin de proposer des éventuelles mesures de gestion.

Ainsi, devant tant d'incertitudes concernant le comportement de migration du saumon entre Golfech et Toulouse, les membres du Groupe Migrateurs Garonne ont décidé d'initier une étude par radio télémétrie dont l'objectif est de 1) suivre la migration sur le tronçon Golfech Toulouse et 2) vérifier l'efficacité des dispositifs de franchissement. La décision ayant été prise fin 2018, l'année 2019 a été consacrée à quelques tests de faisabilité en marquant 7 saumons à Golfech et en les transportant à quelques kilomètres en aval du Bazacle.

En 2020, il a été décidé de mener cette étude dans sa globalité en prenant en compte la dimension prédation (tags prédation) et en cartographiant les facies d'écoulement sur le tronçon Malause – Toulouse. Un rapport dédié à cette étude est réalisé par MIGADO et le bureau d'études ECOGEA pour présenter précisément le protocole d'étude ainsi que les différents résultats obtenus. Dans le présent rapport, seuls les principaux résultats sont présentés car les stations de contrôle de Golfech et du Bazacle sont des sites clés d'observation.

En 2020, 18 saumons ont été équipés de radio-émetteurs, de tags prédation et de pit tag Tiris (marques passives). Ces individus, piégés du 9 avril au 4 juin, ont tous été relâchés au droit du piège, dans le canal de transfert du système de franchissement de Golfech.

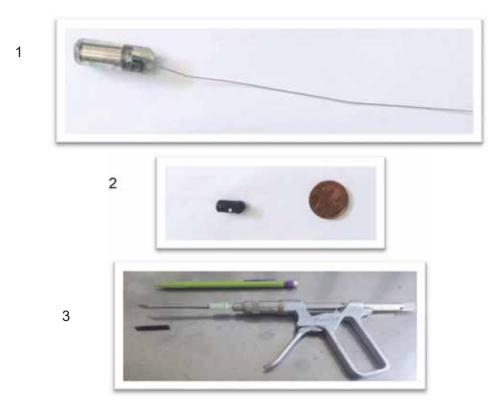



Figure 87 : Emetteur radio (ATS), (2) Tag prédation, (3) Pit tag Tiris

Du fait de la crise sanitaire, les suivis ont été essentiellement réalisés à l'aide d'un reseau de récepteurs automatiques (Radio, acoustique et antenne Tiris), décrit sur la figure 88.

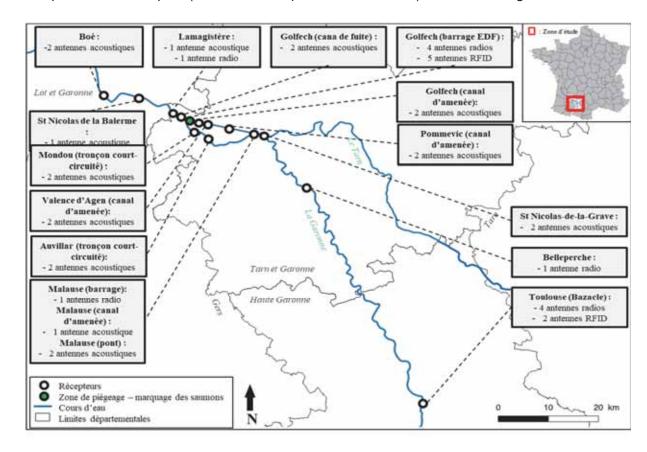



Figure 88 : localisation des différents récepteurs télémétrie sur la Garonne en 2020

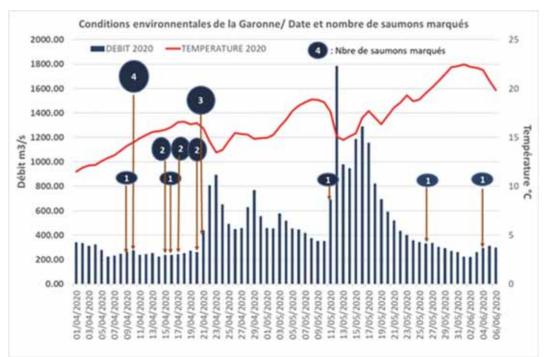



Figure 89 : Piégeage des saumons radiomarqués à Golfech en fonction du débit et de la température de l'eau en 2020

La figure 89 montre que 15 saumons sur les 18 ont été marqués avant la crue du 22 avril, 1 individu avant la crue du 11 mai et les 2 derniers une fois que le débit est repassé sous la valeur des 400 m3/s, lorsque la légère reprise de migration a été observée.

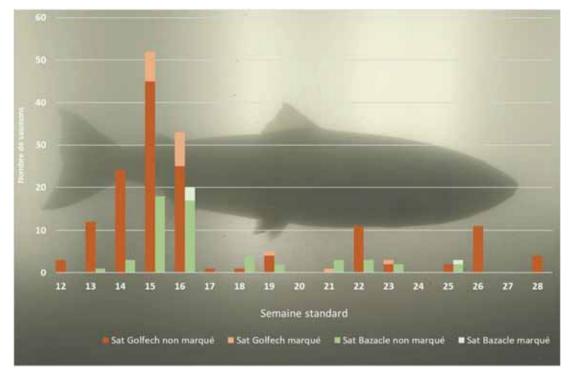



Figure 90 : Evolution hebdomadaire des individus marqués et non marqués à Golfech et au Bazacle en 2020

Sur les 18 saumons, 1 individu a été prédaté dans le canal de transfert peu de temps après son lâcher. Les 17 autres sont sortis rapidement du canal d'amenée de la centrale hydroélectrique (11 km), en moyenne en 5h.

7 saumons ont été observés au droit du Bazacle et parmi eux, 4 ont franchi l'obstacle. Les 3 premiers, en avril, 10h après s'être présentée au pied du Bazacle et 10 jours après avoir été marqués à Golfech. Le dernier, le 24 juin, 1 mois après avoir été marqué à Golfech. Les 3 autres saumons n'ayant pas franchi le Bazacle sont restés actifs jusqu'à la fin du mois de juin, repérés en manuel entre le Bazacle (rive droite et gauche) et les 2 kms situés en aval de l'ouvrage.

Le fait marquant est la dévalaison des saumons observés au premier coup d'eau (22 avril) avec pour 1 saumon ayant franchi le Bazacle le 18 avril, une dévalaison le 24 avril et une détection en aval de Golfech le 25!

Les trois figures suivantes (91 à 93) montrent la position connue ou supposée des saumons juste avant les 3 crues de la Garonne. Elles montrent très clairement ce phénomène de dévalaison qui peut expliquer en 2020 le faible taux de transfert une fois ces coups d'eau passés et la très faible reprise d'activité observée après ces phénomènes.

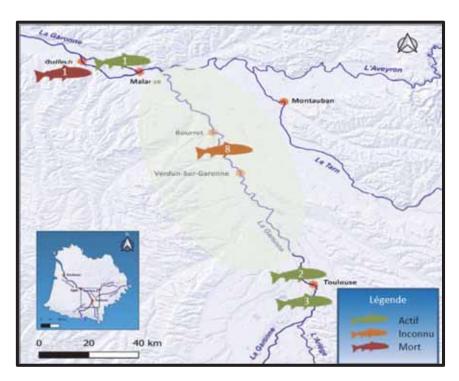



Figure 91 : Position des saumons radiomarqués à Golfech le 22 avril 2020

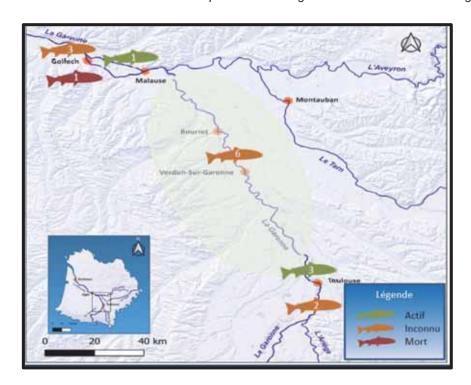



Figure 92 : Position des saumons radiomarqués à Golfech le 11 mai 2020

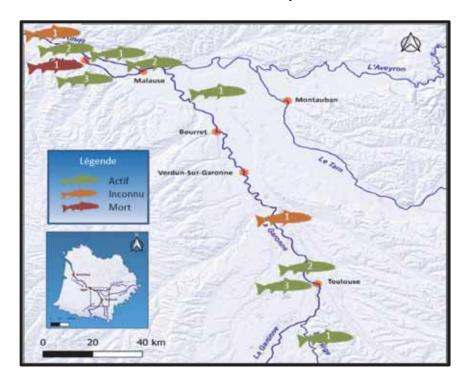



Figure 93 : Position des saumons radiomarqués à Golfech le 10 juin 2020

L'ensemble de ces éléments seront détaillés dans le rapport consacrés à cette étude où les perspectives de suivis 2021 seront également exposées.

#### 4.2.4.3 Les suivis à Carbonne

| Année             | Janvier | Février | Mars | Avril | Mai | Juin | Juillet | Août | Septembre | Octobre | Novembre | Décembre | Total |
|-------------------|---------|---------|------|-------|-----|------|---------|------|-----------|---------|----------|----------|-------|
| 2000              | 0       | 0       | 0    | 0     | 0   | 6    | 7       | 4    | 0         | 3       | 1        | 1        | 22    |
| 2001              | 0       | 0       | 0    | 0     | 0   | 6    | 20      | 4    | 1         | 5       | 4        | 1        | 41    |
| 2002              | 0       | 0       | 1    | 5     | 0   | 6    | 5       | 12   | 8         | 14      | 2        | 0        | 53    |
| 2003              | 0       | 0       | 0    | 0     | 3   | 7    | 2       | 0    | 0         | 0       | 0        | 1        | 13    |
| 2004              | 0       | 0       | 0    | 0     | 0   | 6    | 8       | 0    | 0         | 1       | 0        | 0        | 15    |
| 2005              | 0       | 0       | 0    | 0     | 0   | 3    | 0       | 0    | 0         | 0       | 1        | 0        | 4     |
| 2006              | 0       | 0       | 0    | 0     | 11  | 9    | 1       | 0    | 2         | 3       | 0        | 0        | 26    |
| 2007              | 0       | 0       | 0    | 0     | 0   | 3    | 3       | 0    | 0         | 1       | 1        | 1        | 9     |
| 2008              | 0       | 0       | 2    | 9     | 18  | 1    | 5       | 1    | 0         | 4       | 2        | 1        | 43    |
| 2009              | 0       | 0       | 0    | 1     | 0   | 7    | 0       | 0    | 0         | 0       | 3        | 1        | 12    |
| 2010              | 0       | 0       | 1    | 3     | 0   | 0    | 3       | 0    | 0         | 0       | 1        | 3        | 11    |
| 2011              | 0       | 0       | 0    | 1     | 6   | 10   | 4       | 0    | 0         | 1       | 0        | 0        | 22    |
| 2012              | 0       | 0       | 0    | 0     | 0   | 2    | 2       | 0    | 0         | 0       | 0        | 0        | 4     |
| 2013              | 0       | 0       | 0    | 1     | 0   | 0    | 0       | 0    | 0         | 0       | 0        | 0        | 1     |
| 2014              | 0       | 0       | 0    | 0     | 0   | 1    | 4       | 0    | 0         | 0       | 0        | 0        | 5     |
| 2015              | 0       | 0       | 0    | 0     | 2   | 15   | 2       | 0    | 0         | 0       | 1        | 0        | 20    |
| 2016              | 0       | 0       | 0    | 2     | 9   | 3    | 2       | 0    | 0         | 0       | 0        | 0        | 16    |
| 2017              | 0       | 0       | 0    | 0     | 5   | 0    | 0       | 0    | 0         | 0       | 0        | 0        | 5     |
| 2018              | 0       | 0       | 0    | 0     | 0   | 0    | 0       | 0    | 0         | 0       | 0        | 0        | 0     |
| 2019              | 0       | 0       | 0    | 1     | 4   | 2    | 0       | 0    | 0         | 1       | 1        | 0        | 9     |
| 2020              | 0       | 0       | 0    | 0     | 6   | 4    | 2       | 0    | 0         | 0       | 0        | 0        | 12    |
| Movenne 2000-2019 | 0       | 0       | 1    | 3     | 7   | 5    | - 5     | 5    | 4         | 4       | 2        | 1        | 17    |

Figure 94 : Répartition mensuelle des saumons contrôlés à Carbonne entre 2000 et 2020

En 2020, 12 saumons ont été piégés à Carbonne, 10 pendant la période printanière et 2 pendant la période estivale. A noter que le piège a été arrêté du 17 mars au 11 mai du fait de la crise sanitaire liée au COVID 19.

Par ailleurs, un saumon radiomarqué a été piégé le 03 juillet à Carbonne. Il avait été piégé à Golfech le 26 mai et relâché ce même jour et avait franchi le Bazacle le 24/06. Il aura mis 9 jours pour parcourir les 40 km qui séparent le Bazacle du piège de Carbonne, soit environ 4 km par jour en moyenne sachant qu'il a dû franchir 2 obstacles avant d'être capturé (Le Ramier ou la Cavaletade puis Carbonne). Il a été transporté sur l'Ariège le 06 juillet.

Ces 12 individus ont été transportés sur l'Ariège au niveau de Varilhes conformément aux préconisations du Groupe Migrateur Garonne. A noter que le saumon radiomarqué a été détecté en novembre au droit des zones de reproduction de l'Ariège situées en amont du lieu de déversement.

| annee | date       | 1HM | 2HM | ЗНМ | LT   | LF   | CDT   | sexe | date.transp | lieu.transp | type.transp |
|-------|------------|-----|-----|-----|------|------|-------|------|-------------|-------------|-------------|
| 2020  | 14/05/2020 | 0   | 0   | 1   | 92.5 | 90   | 90-95 | F    | 15/05/2020  | Varilhes    | Caisse      |
| 2020  | 22/05/2020 | 0   | 0   | 1   | 92   | 88.5 | 90-95 | F    | 25/05/2020  | Varilhes    | Caisse      |
| 2020  | 24/05/2020 | 0   | 1   | 0   | 76   | 73   | 75-80 | M    | 25/05/2020  | Varilhes    | Caisse      |
| 2020  | 27/05/2020 | 0   | 1   | 0   | 80   | 76.5 | 75-80 | F    | 29/05/2020  | Varilhes    | Caisse      |
| 2020  | 28/05/2020 | 0   | 1   | 0   | 82   | 79   | 80-85 | F    | 29/05/2020  | Varilhes    | Caisse      |
| 2020  | 28/05/2020 | 0   | 1   | 0   | 79.5 | 76.5 | 75-80 | F    | 29/05/2020  | Varilhes    | Caisse      |
| 2020  | 04/06/2020 | 0   | 1   | 0   | 83.5 | 80   | 80-85 | F    | 05/06/2020  | Varilhes    | Caisse      |
| 2020  | 04/06/2020 | 0   | 1   | 0   | 77.2 | 73.5 | 75-80 | M    | 05/06/2020  | Varilhes    | Caisse      |
| 2020  | 08/06/2020 | 0   | 1   | 0   | 82.5 | 79   | 75-80 | F    | 09/06/2020  | Varilhes    | Caisse      |
| 2020  | 08/06/2020 | 0   | 1   | 0   | 83   | 80.5 | 80-85 | F    | 09/06/2020  | Varilhes    | Caisse      |
| 2020  | 03/07/2020 | 0   | 1   | 0   | 79.2 | 74.8 | 75-80 | F    | 06/07/2020  | Varilhes    | Caisse      |
| 2020  | 29/07/2020 | 0   | 1   | 0   | 78.5 | 75.5 | 75-80 | M    | 30/07/2020  | Varilhes    | Caisse      |

Figure 95 : Historique des saumons piégés à Carbonne ayant été transportés sur l'Ariège en 2020

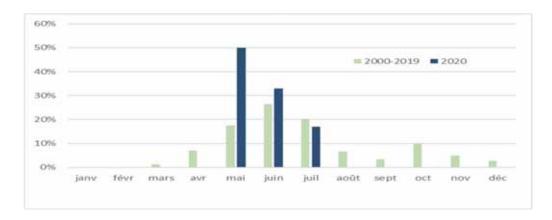



Figure 96 : Comparaison entre la répartition mensuelle des effectifs de saumons piégés à Carbonne entre 2000-2019 et ceux piégés en 2020

#### 4.3 Calendrier des migrations à Golfech, au Bazacle et à Carbonne

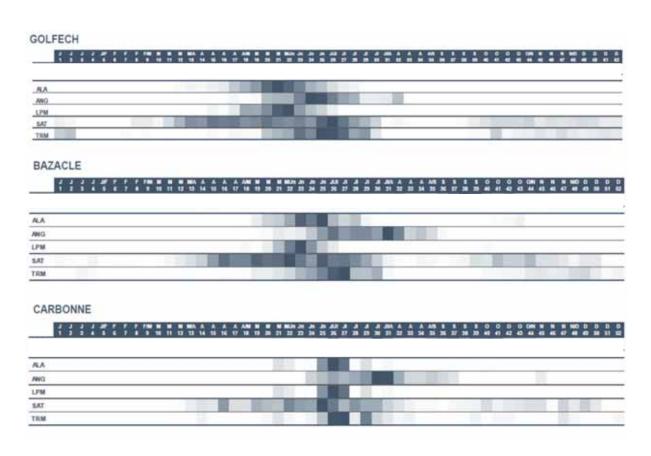



Figure 97 : Calendrier des migrations au niveau des 3 stations de contrôle en montaison de la Garonne.

La Figure 97 permet de visualiser les périodes à enjeux pour les différentes espèces migratrices au niveau des trois sites. Elle permet de voir également le décalage dans le temps de ces périodes entre les différentes stations avec toutefois une période à forts enjeux ciblée entre les mois de mars et juillet, voire aout pour la station de Carbonne.

## 4.4 Les espèces holobiotiques au niveau de Golfech, du Bazacle et de Carbonne

## 4.4.1 Le bilan des passages

| Années | Ablettes | Barbeaux | Black Bass | Brême | Brochet | Carassin | Carpe commune | Chevesne | Gardon | Sandre | Silure | Truite Fario |
|--------|----------|----------|------------|-------|---------|----------|---------------|----------|--------|--------|--------|--------------|
| 1993   | 336      | 2262     | 2          | 4387  | 7       | 5        | 16            | 21       | 0      | 20     | 0      | 19           |
| 1994   | 6285     | 4172     | 5          | 8752  | 1       | 31       | 63            | 40       | 52     | 118    | 0      | 15           |
| 1995   | 13489    | 2616     | 76         | 12802 | 3       | 25       | 0             | 38       | 7      | 336    | 3      | 31           |
| 1996   | 2818     | 2349     | 10         | 5048  | 2       | 19       | 2             | 64       | 1      | 151    | 9      | 22           |
| 1997   | 37624    | 690      | 16         | 2265  | 4       | 4        | 187           | 30       | 9      | 14     | 71     | 38           |
| 1998   | 26052    | 1706     | 5          | 7111  | 1       | 26       | 1257          | 31       | 2457   | 8      | 146    | 67           |
| 1999   | 22003    | 605      | 20         | 4168  | 10      | 524      | 2131          | 26       | 2897   | 8      | 260    | 53           |
| 2000   | 23150    | 1405     | 24         | 3539  | 14      | 317      | 1477          | 20       | 2336   | 15     | 310    | 42           |
| 2001   | 12488    | 1845     | 7          | 3472  | 3       | 103      | 1803          | 18       | 1856   | 11     | 242    | 30           |
| 2002   | 21091    | 572      | 9          | 12724 | 3       | 102      | 930           | 7        | 1665   | 7      | 266    | 90           |
| 2003   | 49670    | 527      | 47         | 11727 | 5       | 19       | 1221          | 13       | 8406   | 30     | 386    | 27           |
| 2004   | 116914   | 1178     | 48         | 21415 | 21      | 154      | 3947          | 41       | 2289   | 39     | 628    | 9            |
| 2005   | 60563    | 801      | 44         | 5191  | 16      | -6       | 2844          | 7        | 3230   | 25     | 526    | 5            |
| 2006   | 25772    | 217      | 10         | 5588  | 6       | 55       | 1007          | 11       | 3431   | 16     | 603    | 2            |
| 2007   | 49759    | 365      | 0          | 13864 | 0       | 2        | 1318          | 61       | 892    | 57     | 1134   | 0            |
| 2008   | 53656    | 731      | 2          | 24385 | 2       | 189      | 1802          | 76       | 104    | 8      | 589    | 2            |
| 2009   | 124508   | 618      | 25         | 9914  | 1       | 8        | 402           | 29       | 213    | 41     | 499    | 1            |
| 2010   | 13787    | 672      | 0          | 19343 | 3       | 0        | 935           | 26       | 108    | 9      | 513    | 0            |
| 2011   | 29114    | 196      | 3          | 8075  | 2       | 2        | 922           | 4        | 1416   | 9      | 363    | 0            |
| 2012   | 14639    | 491      | 0          | 27179 | 2       | 39       | 1169          | 62       | 1967   | 3      | 956    | 1            |
| 2013   | 10882    | 511      | 0          | 5554  | 1       | 761      | 811           | 23       | 5904   | 17     | 416    | 0            |
| 2014   | 70174    | 559      | 1          | 7828  | 0       | 0        | 690           | 24       | 47     | 3      | 629    | 1            |
| 2015   | 140052   | 2218     | 0          | 42592 | 0       | 1        | 1432          | 78       | 0      | 54     | 256    | 0            |
| 2016   | 43398    | 2021     | 16         | 19218 | 0       | 1        | 2015          | 40       | 2047   | 20     | 564    | 0            |
| 2017   | 35213    | 1862     | 0          | 10347 | 2       | 0        | 1360          | 31       | 1708   | 21     | 530    | 1            |
| 2018   | 52902    | 652      | 1          | 16352 | 0       | 1        | 4465          | 33       | 7410   | 9      | 409    | 0            |
| 2019   | 37576    | 1089     | 16         | 8510  | 0       | 7        | 771           | 20       | 2891   | 9      | 581    | 0            |
| 2020   | 54104    | 999      | 47         | 21328 | 1       | 294      | 2156          | 113      | 6965   | 0      | 774    | 0            |

Figure 98 : Bilan des passages annuels des principales espèces de rivière à Golfech entre 1993 et 2020.

| Année | ABL    | BAF   | BBG | BRE  | BRO | CAS | CCO | CHE  | GAR   | PER | PES | PCH | SAN | SIL | TAN | TRT | VAN  |
|-------|--------|-------|-----|------|-----|-----|-----|------|-------|-----|-----|-----|-----|-----|-----|-----|------|
| 1993  | 11056  | 9029  | 0   | 2640 | 0   | 0   | 6   | 23   | 988   | 0   | 0   | 1   | 0   | 0   | 0   | 1   | 0    |
| 1994  | 14591  | 2676  | 0   | 1372 | 0   | 1.  | 15  | 49   | 1905  | 0   | 0   | 0   | 0   | 0   | 0   | 0   | 0    |
| 1995  | 102426 | 5257  | 1   | 2628 | 0   | 0   | 7   | 49   | 4204  | 0   | 0   | 0   | 0   | 1   | 1   | 5   | 0    |
| 1996  | 5396   | 6018  | 1   | 1124 | 1   | 1   | 19  | 43   | 1915  | 1   | 0   | 0   | 0   | 1   | 1   | 9   | 3    |
| 1997  | 11226  | 2182  | 0   | 4121 | 0   | 0   | 11  | 37   | 10037 | 0   | 0   | 0   | 0   | 5   | 0   | 4   | 2    |
| 1998  | 2590   | 1213  | 1   | 2503 | 0   | 0   | 26  | 128  | 2171  | 1   | 0   | 0   | 0   | 2   | 0   | 8   | 14   |
| 1999  | 12694  | 680   | 0   | 2001 | 0   | -5  | 10  | 39   | 3188  | 0   | 0   | 0   | 0   | 0   | 2   | 6   | 3    |
| 2000  | 64907  | 2907  | 0   | 3273 | 0   | 1   | 40  | 62   | 11457 | 5   | 0   | 0   | -1  | 0   | 4   | 9   | 5    |
| 2001  | 11293  | 454   | .1  | 1965 | 0   | -1  | 15  | 51   | 1977  | 0   | 0   | 0   | 0   | 2   | 1   | 7   | 8    |
| 2002  | 25268  | 854   | 0   | 2763 | 0   | -2  | 32  | 33   | 1655  | 0   | 0   | 1   | 0   | 0   | 0   | 9   | 40   |
| 2003  | 10707  | 747   | 1   | 1890 | 0   | 0   | 38  | 42   | 1501  | 0   | 1   | 0   | 0   | 3   | 0   | 15  | 42   |
| 2004  | 11850  | 1433  | 0   | 1250 | 0   | 0   | 38  | 77   | 7815  | 1   | 0   | 0   | 0   | 5   | 1   | 4   | 82   |
| 2005  | 6158   | 2098  | 0   | 3055 | 0   | 0   | 30  | 221  | 1073  | 0   | 0   | 0   | 0   | 3   | 0   | 5   | 4063 |
| 2006  | 33022  | 1271  | 0   | 4387 | 0   | 0   | 37  | 169  | 421   | 1   | 0   | 0   | 0   | 6   | 0   | 6   | 326  |
| 2007  | 104619 | 1419  | 0   | 3818 | 0   | 0   | 35  | 288  | 1796  | 0   | 0   | 0   | 0   | 12  | 0   | 0   | 75   |
| 2008  | 53179  | 1450  | 1   | 1016 | 0   | 0   | 16  | 220  | 354   | 0   | 0   | 0   | 0   | 2   | 0   | 2   | 34   |
| 2009  | 167321 | 1410  | 4   | 1232 | 0   | 0   | 61  | 142  | 979   | 0   | 0   | 1   | 0   | 7   | 0   | 1   | 112  |
| 2010  | 22213  | 4116  | 0   | 2347 | 0   | 0   | 18  | 226  | 1596  | 0   | 0   | 0   | 0   | 0   | 1   | 1   | 121  |
| 2011  | 15959  | 7262  | 0   | 3561 | 0   | 0   | 7   | 269  | 697   | 0   | 0   | 0   | 0   | 7   | 0   | 1   | 138  |
| 2012  | 50713  | 7054  | 0   | 5082 | 0   | 0   | 6   | 557  | 4965  | 0   | 0   | 0   | 0   | 7   | 0   | 0   | 191  |
| 2013  | 90534  | 3768  | 0   | 2362 | 0   | 0   | 16  | 249  | 3011  | 0   | 0   | 0   | 0   | 14  | 0   | 0   | 6    |
| 2014  | 157980 | 10653 | 0   | 2202 | 0   | 0   | 26  | 410  | 599   | 0   | 0   | 0   | 0   | 24  | 0   | 2   | 63   |
| 2015  | 34872  | 18539 | 1   | 1820 | 0   | 0   | 33  | 206  | 267   | 0   | 0   | 0   | 0   | 18  | 0   | 0   | 74   |
| 2016  | 44918  | 14801 | 2   | 3676 | 0   | 0   | 19  | 689  | 941   | 0   | 0   | 0   | 0   | 18  | 0   | 0   | 5    |
| 2017  | 79000  | 24190 | 0   | 2172 | 0   | 0   | 2   | 1185 | 543   | 0   | 0   | 0   | 0   | 30  | 2   | 0   | 70   |
| 2018  | 136413 | 26851 | 0   | 6784 | 0   | 0   | 12  | 178  | 514   | 0   | 0   | 0   | 0   | 58  | 0   | 0   | 147  |
| 2019  | 10884  | 1529  | 0   | 1984 | 0   | 1   | 3   | 472  | 0     | 0   | 0   | 0   | 0   | 21  | 0   | 0   | 0    |
| 2020  | 4083   | 888   | 0   | 1005 | 0   | 0   | 20  | 817  | 232   | 0   | 0   | 0   | 0   | 31  | . 1 | 0   | 0    |

Figure 99 : Bilan des passages annuels des principales espèces de rivière au Bazacle entre 1993 et 2020

| Nom<br>commun | Ablette        | Barb eau | Black-Bass | Bréme | Carpe | Chevesne | Gardon | Goujon   | Grémille | Ombre | Perche | Sandre | Silure | Truite arc- | Toxostome | Truite<br>fario |
|---------------|----------------|----------|------------|-------|-------|----------|--------|----------|----------|-------|--------|--------|--------|-------------|-----------|-----------------|
|               | and the second |          |            |       |       |          | ESPEC  | ES DE RI | VIERE    |       |        |        |        |             |           |                 |
| 2000          | 22969          | 406      | 1          | 3784  | 5     | 49       | 1263   | 1044     | 1        | 1     | 5      | 1      |        | 5           | 1393      | 168             |
| 2001          | 20135          | 2624     | 1          | 1257  | 3     | 3        | 537    | 3506     | 5        | 5     | 1      |        | 2      | 9           | 136       | 185             |
| 2002          | 2475           | 190      |            | 598   | 4     | 1        | 58     | 465      | 10       | 5     | 1      |        | 1      | 28          | 3         | 138             |
| 2003          | 8435           | 90       |            | 336   | 2     | 1        | 153    | 3948     | 1        | . 5   | 9      |        | 10     | 13          |           | 141             |
| 2004          | 3231           | 102      |            | 979   | - 5   | 3        | 135    | 891      | 35       | 1     |        | 1      | 5      | 2           | 9633      | 92              |
| 2005          | 3655           | 409      | 1          | 1548  | .7    | 17       | 213    | 4623     | 3        | 1     | 2      |        | 5      | 12          | 2277      | 97              |
| 2006          | 4863           | 487      | -          | 3286  | 4     | 13       | 84     | 4955     | 1        |       | 11     |        | 23     | 9           | 7235      | 31              |
| 2007          | 5163           | 1734     |            | 390   | 15    | 15       | 46     | 101      | 19       |       |        |        | 23     | 1           | 815       | 25              |
| 2008          | 4372           | 628      |            | 244   | 2     |          | 52     | 1394     |          |       | 2      |        | 53     | 1           | 323       | 44              |
| 2009          | 1712           | 296      |            | 638   | 5     | 34       | 125    | 617      |          |       |        |        | 17     | 5           | 0311      | 59              |
| 2010          | 571            | 766      |            | 286   |       | 8        | 257    | 121      |          |       |        |        | 11     | 1           | 662       | 47              |
| 2011          | 2343           | 1463     |            | 2614  | 2     | 11       | 151    | 1151     |          |       | 3      |        | 17     | 2           | 110       | 57              |
| 2012          | 25             | 20       |            | 720   | 5     | 13       | 45     | 122      |          |       |        |        | 17     |             | 11        | 20              |
| 2013          | 470            | 66       |            | 62    | 1     | 5        | 10     | 10       |          |       |        |        | 18     |             | 20        | 2               |
| 2014          | 1414           | 636      |            | 92    | 3     | 23       | 657    | 525      |          |       |        |        | 20     |             | 4         | 4               |
| 2015          | 1190           | 279      |            | 35    | 8     | 17       | 335    | 1723     |          |       |        |        | 16     |             | 100       | 10              |
| 2016          | 3658           | 589      |            | 142   |       | 10       | 735    | 1175     |          |       |        |        | 6      | 1           | 610       | 3               |
| 2017          | 1743           | 1125     |            | 316   |       | 51       | 297    | 437      |          |       |        |        | 9      | 1           | 323       | 5               |
| 2018          | 2129           | 1581     |            | 482   | 2     | 95       | 406    | 622      |          |       |        |        | 29     |             | 267       | 8               |
| 2019          | 2622           | 2445     |            | 420   |       | 118      | 513    | 705      |          |       |        |        | 13     |             | 450       | 7               |
| 2020          | 1855           | 402      |            | 125   |       | 5        | 49     | 990      |          |       |        |        | 14     | 1           | 140       | 6               |
| Total         | 95030          | 16338    | 3          | 18354 | 73    | 492      | 6121   | 29125    | 75       | 18    | 34     | 2      | 309    | 91          | 25692     | 1149            |

Figure 100 : Bilan des passages annuels des principales espèces de rivière à Carbonne entre 1993 et 2020

Le contrôle des migrations des espèces amphibiotiques a permis de mettre en évidence sur toutes les stations de contrôle une activité migratoire parfois intense chez les espèces holobiotiques.

Les cyprinidés constituent toujours la famille la mieux représentée, avec notamment les brèmes, les chevesnes, les gardons et les ablettes (espèce la plus représentée sur les 3 stations de contrôle).

La gestion du silure à Golfech en 2020 :

En 2020, la population de silures reste très significative avec 774 individus contrôlés alors même que l'ascenseur à poissons a été arrêté à de nombreuses reprises, notamment pendant la période de migration. Le silure a été étudié par MIGADO, notamment par radiopistage entre 2006 et 2008, afin de mieux comprendre son comportement au droit de l'obstacle. Les premiers résultats de l'étude montraient des déplacements quotidiens et réguliers entre la sortie du canal de fuite et l'ascenseur à poissons pendant toute la saison de migration sans toutefois pouvoir démontrer la raison de ces déplacements.

Cependant, depuis 2010, il a été observé dans le canal de transfert une forte prédation sur toutes les espèces migratrices avec certains comportements de chasse spectaculaires vis-à-vis du saumon atlantique. Au-delà de la prédation, la présence du silure dans le canal de transfert impose un changement de comportement des espèces migratrices et notamment du saumon atlantique. En effet, alors que cette espèce avait tendance à circuler rapidement dans cet espace de transition entre l'ascenseur à poissons et le canal d'amenée de la centrale hydroélectrique, les images montrent que certains individus peuvent mettre jusqu'à 48 h pour sortir du système lorsque le silure est présent dans ce canal (Figure 101).

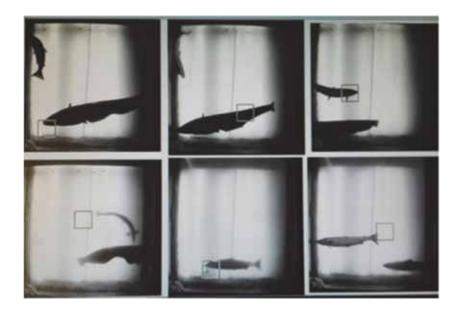



Figure 101 : Saumon « effarouché » par un silure dans le canal de transfert de Golfech

Enfin, lors de vidanges du canal de transfert de l'ascenseur à poissons, il a été retrouvé des saumons morts après régurgitation par certains silures.

Ainsi, fin 2015, il a été proposé un protocole d'enlèvement des silures à Golfech afin de mettre un place une gestion simple, efficace et partagée, qui permette de limiter la présence des silures dans le dispositif de franchissement et donc leur impact, tout en garantissant un fonctionnement optimal du dispositif, la migration des poissons et la possibilité de manipulation des espèces pour les études en cours (piégeage et transport de saumons et d'aloses). En effet, pendant les mois d'avril à juin, saumons, aloses et silures se retrouvent potentiellement ensemble dans le dispositif de franchissement.

Ainsi, le protocole de gestion des silures a été mis en place en 2016 avec pour objectifs :

- de vidanger le canal de transfert 1 jour sur 2 le matin (8 h) et de sortir les silures « stagnant » en les évacuant par une goulotte de vidange à l'aval en les ayant préalablement marqués à l'aide d'une marque RFID (Tiris) et en ayant vérifié les contenus stomacaux;
- de vérifier que tous les saumons contrôlés à la vitre de visualisation sortent du canal de transfert à l'aide d'une caméra acoustique de type Blue View située au droit de la sortie du canal de transfert.

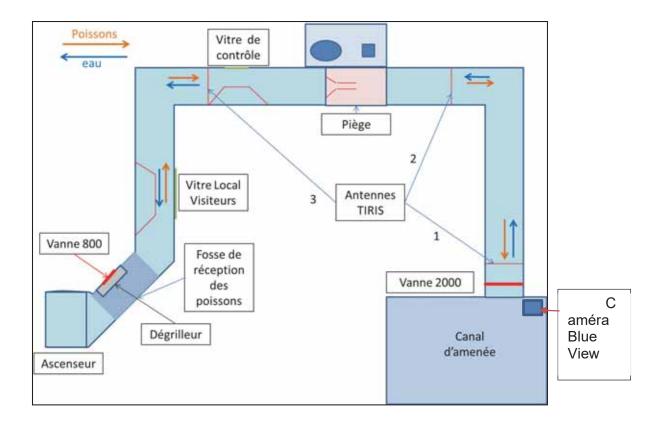



Figure 102 : Schéma du canal de transfert de l'ascenseur à poissons de Golfech.

Les principaux résultats ont montré que 1) 4 saumons ont été prédatés dans le canal de transfert par des silures stagnant dans le système de franchissement lors d'une journée sans vidange après être montés par l'ascenseur la nuit précédente, 2) que 30 % des saumons observés à la vitre de contrôle ne sont pas sortis du canal, certainement prédatés par des silures revenant dans ce dispositif par l'amont et 3) des individus marqués et relâchés à l'aval réempruntaient l'ascenseur à poissons pendant la saison (3/48).

Au vu de ces résultats, il a été décidé en 2017 de reconduire cette gestion en modifiant le protocole :

- La vidange du canal de transfert est effectuée tous les jours ouvrables, voire le week-end en fonction des migrations ;
- Les silures capturés lors de ces vidanges sont placés en stabulation avant d'être donnés à des pêcheurs professionnels habilités à les valoriser ;
- La sortie du canal de transfert est filmée avec une caméra acoustique mise en place par EDF R&D.

Par ailleurs, afin d'éviter le retour de silures dans le canal de transfert par l'amont, EDF CIH (en collaboration avec l'AFB et MIGADO) a travaillé pour modifier la grille située à l'amont de ce canal. La solution retenue a été d'installer une grille équipée de barreaux verticaux espacés de 5 cm sur laquelle sont fixés 2 cônes anti-retour sur le modèle de celui existant au niveau du piège à saumons/aloses situé dans le canal de transfert. En effet, son dimensionnement a montré par le passé qu'il permettait le passage de tous les poissons et qu'il empêchait les silures de l'emprunter dans le sens « amont – aval », jouant le rôle d'anti

retour. L'ouverture terminale de cette nasse a été fixée à 18 cm de largeur. Par ailleurs, une potence équipée d'un treuil a été installée par EDF UPSO et le GU de Golfech pour faciliter son nettoyage.





Figure 103 : Photo de l'ancienne grille située à l'amont du canal de transfert (gauche) et nouvelle grille « anti-retour » mise en place sur le site de Golfech en amont du canal de transfert en 2017.

Résultats 2017 : sur les 52 vidanges effectuées, 67 silures ont été capturés et valorisés, soit 12 % des individus observés (550). Malheureusement, la grille anti retour n'ayant pu être installée en début de saison, 3 saumons se sont fait prédater (retrouvés dans les contenus stomacaux).

Ainsi, en 2018, le même protocole a été reconduit avec mise en place de la grille anti retour en amont du canal de transfert dès le début de saison.

## Résultats 2018 :

Au total, 35 vidanges ont été réalisées du 18/04 au 11/07 dont 20 sans silures capturés. 47 individus ont été capturés et valorisés sur les 409 observés dans la passe à poissons.

Les contenus stomacaux sur ces individus ont été effectués systématiquement. 65 % des estomacs se sont révélés vides. Les autres contenaient essentiellement des brèmes ou autres poissons indéterminés (digestion) mais aucun migrateur n'a été observé lors de ces opérations. Par ailleurs, la grille anti retour a été testée durant toute l'année et il a été mis en évidence que les silures, même de grandes tailles (> 2 m) pouvaient sortir sans problèmes du canal de transfert.

#### Résultats 2019 :

Au total, 35 vidanges ont été réalisées entre le 1<sup>er</sup> avril et le 26 juin. Sur les 581 silures observés en 2019, 52 ont été capturés et valorisés.

Grâce aux tests réalisés en 2018 qui montraient qu'il y avait 60 % de chances de ne pas avoir de silures « stagnant » si le nombre d'individus observés à la vitre de contrôle était inférieur à 3, le nombre de vidanges dans la saison a pu être optimisé.

#### Résultats 2020

Entre le 15 mars et le 15 juillet 2020, date de fin des opérations de gestion du silure dans le canal de transfert, seulement 8 vidanges du canal de transfert ont été effectuées. En effet, entre le 17 mars et le 11 mai, les équipes de MIGADO ont fonctionné en effectifs réduits du fait du confinement imposé par la crise sanitaire liée au covid-19.

Cependant, la migration du saumon atlantique et des aloses en 2020, susceptible d'être impactée par la présence du silure, a été fortement influencée par les débits de la Garonne avec par exemple, 78 % des passages de saumons (130 individus sur 168) observés avant la crue du 22 avril. Dans le même temps, « seulement » 144 silures ont été contrôlés (tailles comprises entre 78 cm et 191 cm, moy 123 cm). Pendant cette période, la très grande majorité de ces silures n'a fait que transiter par le canal de transfert en sortant très rapidement du dispositif de franchissement la nuit, avant que les saumons ne se présentent dans l'ascenseur à poissons (figure 104 et 105).

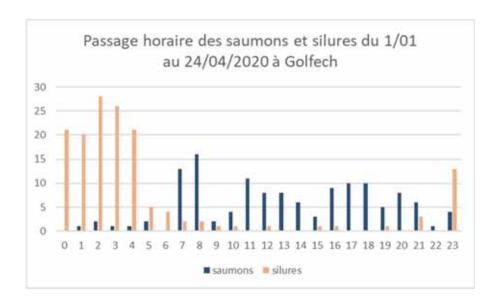



Figure 104 : Passage horaire des saumons et silures du 1/01 au 24/04 à Golfech en 2020



Figure 105 : Evolution journalière des passages de saumons et silures à Golfech entre le 15/03/2020 et le 15/07/2020 en fonction du débit et de la température de l'eau.

Sur ces 144 silures pendant cette période, seulement 2 individus ont fait de nombreux allers- retours à partir du 20 avril dont 1 ayant probablement prédaté un saumon marqué avec un émetteur pour l'opération de suivi par radiopistage des saumons sur la Garonne. Ainsi, une vidange a été réalisée en mobilisant 3 techniciens de MIGADO le 24/04 pour les sortir et les valoriser par les pêcheurs professionnels après stabulation dans le bassin dédié.

Entre le 11 mai (retour du personnel MIGADO après confinement) et le 28 juin, 7 vidanges ont été effectuées dont 3 concernées par la présence de silures (12)

Au total, en 2020, seulement 14 silures ont été capturés et valorisés par les pêcheurs professionnels sur les 706 individus ayant empruntés le dispositif de franchissement entre le 15 mars et le 15 juillet, soit 2 % des individus.

Le tableau ci-après précise la taille des individus, la date de capture et le cas échéant les contenus stomacaux.

| Date                    | Vidange | Num_Vidange | Date_capture | Date_Sortie | Taille    | Destination  | Contenu Stomacaux | Remarque           |
|-------------------------|---------|-------------|--------------|-------------|-----------|--------------|-------------------|--------------------|
| 24/04/2020              | oui     | 1           | 24-avr       | 24-avr      | 185.00    | valorisation | ras               | Saumons N°10       |
| 24/04/2020              | Oui     | 1           | 24-dVI       | 24-dVI      | 165.00    | Valutisation | 145               | régurgité dans le  |
| 24/04/2020              | oui     | 1           | 24-avr       | 24-avr      | 180.00    | valorisation | ras               | canal de transfert |
| 25/04/2020 - 11/05/2020 | non     |             |              |             | Confineme | ent          |                   |                    |
| 12/05/2020              | oui     | 2           |              |             | Pa        | s de silures |                   |                    |
| 13/05/2020 - 18/05/2020 | non     |             |              |             |           |              |                   |                    |
| 19/05/2020              | oui     | 3           |              |             | Pa        | s de silures |                   |                    |
| 20/05/2020 - 26/05/2020 | non     |             |              |             |           |              |                   |                    |
| 27/05/2020              | oui     | 4           |              |             | Pa        | s de silures |                   |                    |
| 28/05/2020 - 4/06/2020  | non     |             |              |             |           |              |                   |                    |
| 05/06/2020              | oui     | 5           | 05/06/2020   | 09/06/2020  | 116.00    | valorisation | ras               |                    |
| 05/06/2020              | oui     | 5           | 05/06/2020   | 09/06/2020  | 127.00    | valorisation | ras               |                    |
| 05/06/2020              | oui     | 5           | 05/06/2020   | 09/06/2020  | 190.00    | valorisation | amour blanc       |                    |
| 05/06/2020              | oui     | 5           | 05/06/2020   | 09/06/2020  | 206.00    | valorisation | ras               |                    |
| 06/06/2020 - 11/06/2020 | non     |             |              |             |           |              |                   |                    |
| 11/06/2020              | oui     | 6           |              |             | Pa        | s de silures |                   |                    |
| 12/06/2020 - 21/06/2020 | non     |             |              |             |           |              |                   |                    |
| 22/06/2020              | OUI     | 7           | 22/06/2020   | 26/06/2020  | 110.00    | valorisation | ras               |                    |
| 23/06/2020 - 25/06/2020 | non     |             |              |             |           |              |                   |                    |
| 26/06/2020              | oui     | 8           | 26/06/2020   | 26/06/2020  | 120.00    | valorisation | ras               |                    |
| 26/06/2020              | oui     | 8           | 26/06/2020   | 26/06/2020  | 135.00    | valorisation | ras               |                    |
| 26/06/2020              | oui     | 8           | 26/06/2020   | 26/06/2020  | 158.00    | valorisation | ras               | 2 saumons dans le  |
| 26/06/2020              | oui     | 8           | 26/06/2020   | 26/06/2020  | 112.00    | valorisation | ras               | canal              |
| 26/06/2020              | oui     | 8           | 26/06/2020   | 26/06/2020  | 108.00    | valorisation | ras               | Cariai             |
| 26/06/2020              | oui     | 8           | 26/06/2020   | 26/06/2020  | 143.00    | valorisation | ras               |                    |
| 26/06/2020              | oui     | 8           | 26/06/2020   | 26/06/2020  | 115.00    | valorisation | ras               |                    |
| 27/06/2020 - 1/07/2020  | non     |             |              |             |           |              |                   |                    |
| 02/07/2021              | oui     | 9           |              |             | Pa        | s de silures |                   |                    |
| 3/07/2020 - 15/07/2020  | non     |             |              |             |           |              |                   |                    |

Figure 106 : Bilan des vidange du canal de transfert et valorisation des silures capturés en 2020 à Golfech

Les opérations de vidange se sont terminées le 15/07 conformément à l'arrêté préfectoral.

Gestion du débit d'attrait pendant la période de migration des anguilles et influence sur le passage des silures

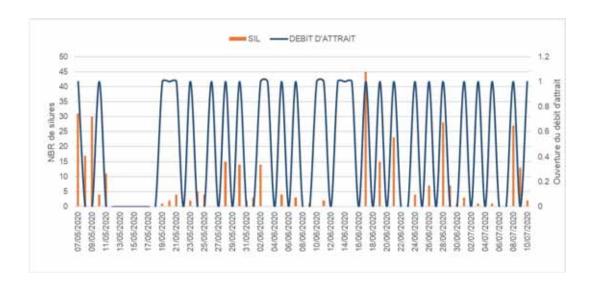



Figure 107 : Evolution des passages de silures en fonction de la délivrance du débit d'attrait de l'ascenseur à poissons

La figure 107 montre très clairement que la gestion du débit d'attrait de l'ascenseur à poissons pour favoriser la migration de l'anguille à Golfech (arrêt du débit d'attrait 1 nuit sur 2) a une influence sur le franchissement de l'obstacle par les silures. Lorsque le débit d'attrait est coupé, il passe 2 fois moins de silures que lorsque le débit fonctionne normalement (figure 108). Cette gestion systématique peut s'avérer problématique car l'impact de la stagnation des silures à l'aval de l'ouvrage est certes inconnu mais certainement prégnante. Ainsi, il semble plus favorable de laisser ces individus migrer vers l'amont où, s'ils s'avèrent qu'ils posent problème, ils pourront être géré lors des vidanges. Ainsi, en 2021, l'arrêt du débit d'attrait, très favorable à la migration de l'anguille, ne sera pas systématiquement effective une nuit sur deux, mais décidée par les techniciens de MIGADO en fonction de la migration de cette espèce et des conditions environnementales (température de l'eau, conditions orageuses...

| DEBIT D'ATTRAIT | NBR DE NUITS | NBR DE SIL | NBR PAR NUIT |
|-----------------|--------------|------------|--------------|
| 0               | 24           | 100        | 4.2          |
| 1               | 26           | 243        | 9.3          |
| Total général   | 50           | 343        | 6.9          |

Figure 108 : Nombre de silures empruntant l'ascenseur à poissons en fonction du fonctionnement du débit d'attrait entre le 17 mai et le 10 juillet 2020 (période de la migration de l'anguille)

Enfin, de nombreuses observations ont été faites par les techniciens de MIGADO au droit des entrées de l'ascenseur à poissons pour indiquer la présence visuelle de silures sur cette zone. Elles ont été bancarisées, standardisées et seront reconduites en 2021 pour permettre de les mettre en relation avec les pêches réalisées par les pêcheurs professionnels

en aval du canal de fuite, mais également pour les comparer avec les passages observés au niveau de l'ascenseur à poissons. La figure 109 reprend l'ensemble de ces éléments.

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ctionement des groupes | Fonctio |             |       | tion | uv d'observa | as survant los lie | mhra da silura | Nor | ı       |    |       |      |            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|-------------|-------|------|--------------|--------------------|----------------|-----|---------|----|-------|------|------------|
| 15/03/2000   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                        |         | Silures ASP | Total |      |              |                    |                |     | Groupe1 | Н  | Heure | Mois | Date       |
| 150917000   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 0.5                  |         | 2           |       |      |              |                    |                | _   |         | 9  | 9:00  | 3    | 26/03/2020 |
| 21/03/2000   3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 0.5                  |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 2703/2000   3   38:00   18   0   0   0   0   0   0   0   0   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 0.5                  |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 3903/3020   3   10:00   10   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1                    | 1       | 0           | 0     |      | 0            | 0                  | 0              | 0   | 0       | 18 | 18:00 | 3    | 27/03/2020 |
| 3003/2000   3   12:00   12   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 1                    | 1       | 0           | 0     |      | 0            | 0                  | 0              | 0   | 0       | 9  | 9:00  | 3    | 28/03/2020 |
| 31/03/2020   3   15:00   15   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 01/04/2020 4 9:00 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5 0.5                |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 0.5                |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 03/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 04/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 66/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 07/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 107/14/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 0                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 08/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| DB/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 10/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0                    | 1       | 4           | 7     |      | 2            | 5                  | 0              | 0   | 0       | 9  |       | 4    |            |
| 11/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0                    | 1       | 4           | 16    |      | 6            | 10                 | 0              | 0   | 0       | 20 | 20:00 | 4    | 09/04/2020 |
| 14/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0                    | 1       | 17          |       |      |              | 5                  | 0              | 5   | 0       | 10 |       | 4    |            |
| 14/04/2020   4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 0                    |         |             |       |      |              | 3                  |                |     |         |    | 8:00  | 4    | 11/04/2020 |
| 15/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 15/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 15/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 15/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 0                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 17/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 17/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 22/04/2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      | 23/04/2020 |
| 28/04/2020         4         8:00         8         0         2         0         0         1         3         2         1         1           129/04/2020         4         8:00         8         0         3         0         1         0         4         2         1         1         1           30/04/2020         4         9:00         9         0         0         0         0         0         0         3         1         1         1           03/05/2020         5         11:00         11         0         3         2         1         0         6         10         1         1         1         04/05/2020         5         9:00         9         3         0         0         0         0         3         10         1         1         1         05/05/2020         5         9:00         9         3         0         0         0         0         0         0         0         0         1         0         4         65         1         1         1         06/05/2020         5         9:00         9         3         0         0         1         0         0                                                                                                                                                                | 1 1                    | 1       | 0           | 3     |      | 0            | 1                  | 0              | 2   | 0       | 8  | 8:00  | 4    | 24/04/2020 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1                    | 1       |             |       |      | 0            |                    | 2              | 2   |         | 9  | 9:00  | 4    | 27/04/2020 |
| 30/04/2020   4   9:00   9   0   0   0   0   0   0   0   3   1   1   1   1   1   1   1   1   1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1                    | 1       |             |       |      | 1            | 0                  | 0              |     | 0       | 8  | 8:00  | 4    |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                    |         |             |       |      |              |                    |                |     |         |    | 8:00  |      | 29/04/2020 |
| 04/05/2020         5         9:00         9         3         0         0         0         0         3         10         1         1           05/05/2020         5         9:00         9         0         0         0         0         0         20         1         1           06/05/2020         5         9:00         9         3         0         0         1         0         4         655         1         1         1         06/05/2020         5         18:00         18         2         0         0         5         0         7         655         1         1         1         07/05/2020         5         9:00         9         0         0         0         0         0         0         34         1         1         1         11/05/2020         5         9:00         9         0         0         0         0         0         0         34         1         1         1         12/05/2020         5         9:00         9         0         0         0         0         0         2         2         1         1         1         12/05/2020         5         9:00         9 <t< td=""><td>1 1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 15/05/2020         5         9:00         9         0         0         0         0         0         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         <                                                                                                                                                                    | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 18/05/2020         5         9:00         9         0         0         0         0         0         -1         1         1           19/05/2020         5         9:00         9         0         0         1         0         0         1         3         1         1           22/05/2020         5         8:00         8         0         5         0         5         0         10         2         1         0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 22/05/2020 5 8:00 8 0 5 0 5 0 10 2 1 0.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1                    |         |             |       |      |              | 0                  |                | 0   | 0       |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 1                  |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 31/05/2020   5   18:00   18   1   6   0   1   0   0   8   4   1   0   0   0   0   0   0   0   0   0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                        |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       | ,    | J            |                    |                |     |         |    |       |      |            |
| 03/06/202 6 20:00 20 3 2 1 6 0 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                        |         |             |       |      |              | 1                  |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 1                  |         |             |       | 0    | 1            |                    | 1              |     | 1       |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 1                  |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 1                  |         |             |       |      |              |                    |                |     |         |    |       |      | 08/06/2020 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 1                  |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5 1                  |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1                    |         |             |       |      |              |                    |                |     |         |    |       |      |            |
| 07/07/2020 7 8:00 8 0 0 6 2 0 0 8 4 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 0                    | U       | 4           | ŏ     | U    | U            | Z                  | ь              | U   | U       | δ  | 8:00  | /    | 0//0//2020 |

Figure 109 : Observation des silures en aval de l'ascenseur à poissons de Golfech en 2020

## **CONCLUSION**

Depuis 1993, la faune piscicole qui emprunte les passes à poissons de Golfech et du Bazacle est suivie chaque année. La station de Carbonne est, quant à elle, suivie depuis 2000.

En 2020, les ouvrages de franchissements ont fonctionné à 57 %, 90 % et 51 % du temps respectivement à Golfech, au Bazacle et à Carbonne. Cependant, pendant la période de migration (février – juillet), le fonctionnement des dispositifs est nettement supérieur avec 80% à Golfech et 90% au Bazacle. Seul la station de Carbonne n'a pas correctement fonctionné pendant toute la période de confinement liée à la crise sanitaire (COVID19).

Durant l'année 2020, une quinzaine d'espèces ont été recensées dont 4 grands migrateurs amphihalins. A noter la présence de goujons et de toxostomes au niveau de Carbonne, espèces absentes des autres sites.

Le suivi de la reproduction de l'alose, réalisé sur les deux axes Garonne et Dordogne, montre encore cette année une forte tendance à la baisse du stock reproducteur même si ce mauvais résultat était attendu du fait du nombre de géniteurs estimé 5 ans auparavant. Il est passé 364 individus, à l'ascenseur à poissons de Golfech, un des plus faible effectif observé au niveau de Golfech. Le stock reproducteur sur l'ensemble du bassin Garonne Dordogne est estimé à 16500 géniteurs dont 2500 sur le bassin de la Garonne. Un individu a été contrôlé au Bazacle et aucun à Carbonne.

Les effectifs de saumons contrôlés à Golfech sont supérieurs à la movenne de ces 15 dernières années (122 individus) avec 168 individus observés. Plus de 75 % des individus ont été contrôlés avant le mois de mai, et la population est globalement constituée à 88 % d'individus de plusieurs hivers de mer. Du fait de la crise sanitaire et du confinement associé à cette crise, seulement 16 individus ont été transportés sur l'Ariège pour permettre de favoriser la reproduction naturelle sur ce bassin. Cependant, 60 saumons ont franchi le barrage du Bazacle à Toulouse, soit 40% des effectifs contrôlés à Golfech et ayant la possibilité de progresser vers l'amont. Ainsi en 2020, ce sont 76 saumons sur les 168 qui ont la possibilité de se reproduire, soit 47% des effectifs. A Carbonne 12 individus ont été capturés issus des individus contrôlés au Bazacle, et transportés sur l'Ariège tel que préconisé par le Groupe Migrateur Garonne du COGEPOMI. Enfin, l'étude des conditions de migration des saumons sur la Garonne a réellement débuté en 2020, malgré les conditions de confinement, et 18 individus ont été piégés, marqués et lâchés au droit du lieu de capture. Sur ces 18 saumons, 7 sont parvenus au droit du Bazacle et 4 ont franchi l'obstacle. Un rapport détaillé spécifique à cette étude reprend le comportement général et individuel des effectifs margués (Rapport MIGADO MPPESG20, à paraitre).

Cette année, ce sont 48416 anguilles qui ont été comptabilisées comme ayant franchi la rampe spécifique. D'après les études des années précédentes sur ce site, 10% d'anguilles auraient franchi l'obstacle par l'ascenseur à poissons : 4841 individus. Ainsi, il a été estimé à 53257 le nombre d'anguilles ayant franchi l'ouvrage de Golfech en 2020 soit bien inférieur à la moyenne des années précédentes. La migration a été perturbé par la gestion des débits dans les dispositifs de franchissement en période d'étiage. Un protocole de fonctionnement spécifique sera élaboré en collaboration avec EDF pour optimiser la migration de cette espèce sur le site de Golfech.

Les 4 lamproies contrôlées à Golfech en 2020 sont anecdotiques et l'absence de lamproies depuis maintenant 6 ans est très alarmante d'autant plus que cette espèce est quasiment le seul grand migrateur exploité par la pêche aux engins sur la partie aval des axes. L'espèce a été déclassée en espèce en danger par l'UICN au niveau national.

Enfin, la problématique silure, qui se traduit par des perturbations de la migration des aloses et des saumons dans le canal de transfert de l'ascenseur à poissons, a été moins prégnante sur le site, certainement en raison d'une migration très précoce des saumons (ou plutôt une très faible migration d'individus en mai et juin) et de très faibles effectifs de grande alose au niveau de l'ascenseur à poissons. Ainsi, en 2020, seulement 14 silures ont été capturés dans le canal de transfert, soit 2 % des effectifs présents avant le 15 juillet (706). Entre 2016 et 2019, la moyenne des effectifs de silures capturés et valorisés était de 12 % des individus observés sur le site.

#### **BIBLIOGRAPHIE**

BARRACOU D., Communication personnelle.

BAU F., BREINIG T., JOURDAN H., CROZE O., 2005. Suivi par radiopistage de la migration anadrome du saumon atlantique sur la Garonne en amont de Golfech. Deuxième campagne (suivi 2003). Rapport GHAAPPE RA05.01, 101 p.

BOULÊTREAU S., CARRY L., MEYER E. *et al.* High predation of native sea lamprey during spawning migration. *Sci Rep* **10**, 6122 (2020). <a href="https://doi.org/10.1038/s41598-020-62916-w">https://doi.org/10.1038/s41598-020-62916-w</a>

BOYER-BERNARD S., 1991. Contribution à la définition de dispositifs d'évitement des centrales hydroélectriques pour les juvéniles de poissons migrateurs. Thèse de doctorat : Sciences agronomiques : Toulouse, INPT : 1991.

CARRY L., BOUYSSONNIE W., GRACIA S., MENCHI O., 2020. Etude des rythmes de migration des espèces amphibiotiques et holobiotiques de la Garonne au niveau des stations de contrôle de Golfech, du Bazacle et de Carbonne au cours de l'année 2019. Rapport MI.GA.DO

CASSOU-LEINS F., CASSOU-LEINS J.J., 1996. Etude des rythmes de migration des espèces amphibiotiques et holobiotiques de la Garonne au niveau de la station de contrôle de Golfech au cours de l'année 1995. Rapport MI.GA.DO., 25 p. + annexes.

CASTIGNOLLES, 1995. Automatisation du comptage et de la reconnaissance des espèces dans les passes à poissons par l'analyse de séquences d'images. Thèse doctorat, INP Toulouse, 167 p.

CHANSEAU M., DARTIGUELONGUE J., LARINIER M., 2000. Analyse des données sur les passages enregistrés aux stations de contrôle des poissons migrateurs de Golfech et du Bazacle sur la Garonne et de Tuilières sur la Dordogne. Rapport GHAAPPE RA00.02 / MI.GA.DO. G14-00-RT, 64 p.

PORCHER J.P., 1994. Le saumon atlantique en France en 1993. Captures par les pêcheurs et professionnels en eau douce. Eléments de connaissance et de gestion des stocks. Rapport CSP, 48 p.

VOEGTLE B., LARINIER M., 1999. Etude sur les capacités de franchissement des anguillettes –Site hydroélectrique de Tuilières sur la Dordogne (24). Rapport GHAAPPE RA99.04/MIGADO G14.99.RT. 28p + annexes.

Site internet : <a href="http://www.eaufrance.fr">http://www.eaufrance.fr</a>

Les données figurant dans ce document ne pourront être exploitées de quelque manière que ce soit, sans l'autorisation écrite préalable de MI.GA.DO. et de ses partenaires financiers.

# Opération financée par :









PROJET COFINANCÉ PAR LE FONDS EUROPÉEN DE DÉVELOPPEMENT RÉGIONAL

## **Autres partenaires**











